241 lines
5.2 KiB
C#
241 lines
5.2 KiB
C#
using System;
|
|
|
|
using Org.BouncyCastle.Crypto.Modes;
|
|
using Org.BouncyCastle.Crypto.Paddings;
|
|
|
|
namespace Org.BouncyCastle.Crypto.Macs
|
|
{
|
|
/**
|
|
* CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
|
|
* <p>
|
|
* CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC
|
|
* </p><p>
|
|
* CMAC is a NIST recomendation - see
|
|
* csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf
|
|
* </p><p>
|
|
* CMAC/OMAC1 is a blockcipher-based message authentication code designed and
|
|
* analyzed by Tetsu Iwata and Kaoru Kurosawa.
|
|
* </p><p>
|
|
* CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message
|
|
* Authentication Code). OMAC stands for One-Key CBC MAC.
|
|
* </p><p>
|
|
* It supports 128- or 64-bits block ciphers, with any key size, and returns
|
|
* a MAC with dimension less or equal to the block size of the underlying
|
|
* cipher.
|
|
* </p>
|
|
*/
|
|
public class CMac
|
|
: IMac
|
|
{
|
|
private const byte CONSTANT_128 = (byte)0x87;
|
|
private const byte CONSTANT_64 = (byte)0x1b;
|
|
|
|
private byte[] ZEROES;
|
|
|
|
private byte[] mac;
|
|
|
|
private byte[] buf;
|
|
private int bufOff;
|
|
private IBlockCipher cipher;
|
|
|
|
private int macSize;
|
|
|
|
private byte[] L, Lu, Lu2;
|
|
|
|
/**
|
|
* create a standard MAC based on a CBC block cipher (64 or 128 bit block).
|
|
* This will produce an authentication code the length of the block size
|
|
* of the cipher.
|
|
*
|
|
* @param cipher the cipher to be used as the basis of the MAC generation.
|
|
*/
|
|
public CMac(
|
|
IBlockCipher cipher)
|
|
: this(cipher, cipher.GetBlockSize() * 8)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* create a standard MAC based on a block cipher with the size of the
|
|
* MAC been given in bits.
|
|
* <p/>
|
|
* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
|
|
* or 16 bits if being used as a data authenticator (FIPS Publication 113),
|
|
* and in general should be less than the size of the block cipher as it reduces
|
|
* the chance of an exhaustive attack (see Handbook of Applied Cryptography).
|
|
*
|
|
* @param cipher the cipher to be used as the basis of the MAC generation.
|
|
* @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and @lt;= 128.
|
|
*/
|
|
public CMac(
|
|
IBlockCipher cipher,
|
|
int macSizeInBits)
|
|
{
|
|
if ((macSizeInBits % 8) != 0)
|
|
throw new ArgumentException("MAC size must be multiple of 8");
|
|
|
|
if (macSizeInBits > (cipher.GetBlockSize() * 8))
|
|
{
|
|
throw new ArgumentException(
|
|
"MAC size must be less or equal to "
|
|
+ (cipher.GetBlockSize() * 8));
|
|
}
|
|
|
|
if (cipher.GetBlockSize() != 8 && cipher.GetBlockSize() != 16)
|
|
{
|
|
throw new ArgumentException(
|
|
"Block size must be either 64 or 128 bits");
|
|
}
|
|
|
|
this.cipher = new CbcBlockCipher(cipher);
|
|
this.macSize = macSizeInBits / 8;
|
|
|
|
mac = new byte[cipher.GetBlockSize()];
|
|
|
|
buf = new byte[cipher.GetBlockSize()];
|
|
|
|
ZEROES = new byte[cipher.GetBlockSize()];
|
|
|
|
bufOff = 0;
|
|
}
|
|
|
|
public string AlgorithmName
|
|
{
|
|
get { return cipher.AlgorithmName; }
|
|
}
|
|
|
|
private byte[] doubleLu(
|
|
byte[] inBytes)
|
|
{
|
|
int FirstBit = (inBytes[0] & 0xFF) >> 7;
|
|
byte[] ret = new byte[inBytes.Length];
|
|
for (int i = 0; i < inBytes.Length - 1; i++)
|
|
{
|
|
ret[i] = (byte)((inBytes[i] << 1) + ((inBytes[i + 1] & 0xFF) >> 7));
|
|
}
|
|
ret[inBytes.Length - 1] = (byte)(inBytes[inBytes.Length - 1] << 1);
|
|
if (FirstBit == 1)
|
|
{
|
|
ret[inBytes.Length - 1] ^= inBytes.Length == 16 ? CONSTANT_128 : CONSTANT_64;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
public void Init(
|
|
ICipherParameters parameters)
|
|
{
|
|
Reset();
|
|
|
|
cipher.Init(true, parameters);
|
|
|
|
//initializes the L, Lu, Lu2 numbers
|
|
L = new byte[ZEROES.Length];
|
|
cipher.ProcessBlock(ZEROES, 0, L, 0);
|
|
Lu = doubleLu(L);
|
|
Lu2 = doubleLu(Lu);
|
|
|
|
cipher.Init(true, parameters);
|
|
}
|
|
|
|
public int GetMacSize()
|
|
{
|
|
return macSize;
|
|
}
|
|
|
|
public void Update(
|
|
byte input)
|
|
{
|
|
if (bufOff == buf.Length)
|
|
{
|
|
cipher.ProcessBlock(buf, 0, mac, 0);
|
|
bufOff = 0;
|
|
}
|
|
|
|
buf[bufOff++] = input;
|
|
}
|
|
|
|
public void BlockUpdate(
|
|
byte[] inBytes,
|
|
int inOff,
|
|
int len)
|
|
{
|
|
if (len < 0)
|
|
throw new ArgumentException("Can't have a negative input length!");
|
|
|
|
int blockSize = cipher.GetBlockSize();
|
|
int gapLen = blockSize - bufOff;
|
|
|
|
if (len > gapLen)
|
|
{
|
|
Array.Copy(inBytes, inOff, buf, bufOff, gapLen);
|
|
|
|
cipher.ProcessBlock(buf, 0, mac, 0);
|
|
|
|
bufOff = 0;
|
|
len -= gapLen;
|
|
inOff += gapLen;
|
|
|
|
while (len > blockSize)
|
|
{
|
|
cipher.ProcessBlock(inBytes, inOff, mac, 0);
|
|
|
|
len -= blockSize;
|
|
inOff += blockSize;
|
|
}
|
|
}
|
|
|
|
Array.Copy(inBytes, inOff, buf, bufOff, len);
|
|
|
|
bufOff += len;
|
|
}
|
|
|
|
public int DoFinal(
|
|
byte[] outBytes,
|
|
int outOff)
|
|
{
|
|
int blockSize = cipher.GetBlockSize();
|
|
|
|
byte[] lu;
|
|
if (bufOff == blockSize)
|
|
{
|
|
lu = Lu;
|
|
}
|
|
else
|
|
{
|
|
new ISO7816d4Padding().AddPadding(buf, bufOff);
|
|
lu = Lu2;
|
|
}
|
|
|
|
for (int i = 0; i < mac.Length; i++)
|
|
{
|
|
buf[i] ^= lu[i];
|
|
}
|
|
|
|
cipher.ProcessBlock(buf, 0, mac, 0);
|
|
|
|
Array.Copy(mac, 0, outBytes, outOff, macSize);
|
|
|
|
Reset();
|
|
|
|
return macSize;
|
|
}
|
|
|
|
/**
|
|
* Reset the mac generator.
|
|
*/
|
|
public void Reset()
|
|
{
|
|
/*
|
|
* clean the buffer.
|
|
*/
|
|
Array.Clear(buf, 0, buf.Length);
|
|
bufOff = 0;
|
|
|
|
/*
|
|
* Reset the underlying cipher.
|
|
*/
|
|
cipher.Reset();
|
|
}
|
|
}
|
|
}
|