531 lines
12 KiB
C#
531 lines
12 KiB
C#
using System;
|
|
|
|
using Org.BouncyCastle.Crypto.Parameters;
|
|
using Org.BouncyCastle.Math;
|
|
using Org.BouncyCastle.Security;
|
|
|
|
namespace Org.BouncyCastle.Crypto.Generators
|
|
{
|
|
/**
|
|
* generate suitable parameters for GOST3410.
|
|
*/
|
|
public class Gost3410ParametersGenerator
|
|
{
|
|
private int size;
|
|
private int typeproc;
|
|
private SecureRandom init_random;
|
|
|
|
/**
|
|
* initialise the key generator.
|
|
*
|
|
* @param size size of the key
|
|
* @param typeProcedure type procedure A,B = 1; A',B' - else
|
|
* @param random random byte source.
|
|
*/
|
|
public void Init(
|
|
int size,
|
|
int typeProcedure,
|
|
SecureRandom random)
|
|
{
|
|
this.size = size;
|
|
this.typeproc = typeProcedure;
|
|
this.init_random = random;
|
|
}
|
|
|
|
//Procedure A
|
|
private int procedure_A(int x0, int c, BigInteger[] pq, int size)
|
|
{
|
|
//Verify and perform condition: 0<x<2^16; 0<c<2^16; c - odd.
|
|
while(x0<0 || x0>65536)
|
|
{
|
|
x0 = init_random.NextInt()/32768;
|
|
}
|
|
|
|
while((c<0 || c>65536) || (c/2==0))
|
|
{
|
|
c = init_random.NextInt()/32768 + 1;
|
|
}
|
|
|
|
BigInteger C = BigInteger.ValueOf(c);
|
|
BigInteger constA16 = BigInteger.ValueOf(19381);
|
|
|
|
//step1
|
|
BigInteger[] y = new BigInteger[1]; // begin length = 1
|
|
y[0] = BigInteger.ValueOf(x0);
|
|
|
|
//step 2
|
|
int[] t = new int[1]; // t - orders; begin length = 1
|
|
t[0] = size;
|
|
int s = 0;
|
|
for (int i=0; t[i]>=17; i++)
|
|
{
|
|
// extension array t
|
|
int[] tmp_t = new int[t.Length + 1]; ///////////////
|
|
Array.Copy(t,0,tmp_t,0,t.Length); // extension
|
|
t = new int[tmp_t.Length]; // array t
|
|
Array.Copy(tmp_t, 0, t, 0, tmp_t.Length); ///////////////
|
|
|
|
t[i+1] = t[i]/2;
|
|
s = i+1;
|
|
}
|
|
|
|
//step3
|
|
BigInteger[] p = new BigInteger[s+1];
|
|
p[s] = new BigInteger("8003",16); //set min prime number length 16 bit
|
|
|
|
int m = s-1; //step4
|
|
|
|
for (int i=0; i<s; i++)
|
|
{
|
|
int rm = t[m]/16; //step5
|
|
|
|
step6: for(;;)
|
|
{
|
|
//step 6
|
|
BigInteger[] tmp_y = new BigInteger[y.Length]; ////////////////
|
|
Array.Copy(y,0,tmp_y,0,y.Length); // extension
|
|
y = new BigInteger[rm+1]; // array y
|
|
Array.Copy(tmp_y,0,y,0,tmp_y.Length); ////////////////
|
|
|
|
for (int j=0; j<rm; j++)
|
|
{
|
|
y[j+1] = (y[j].Multiply(constA16).Add(C)).Mod(BigInteger.Two.Pow(16));
|
|
}
|
|
|
|
//step 7
|
|
BigInteger Ym = BigInteger.Zero;
|
|
for (int j=0; j<rm; j++)
|
|
{
|
|
Ym = Ym.Add(y[j].ShiftLeft(16*j));
|
|
}
|
|
|
|
y[0] = y[rm]; //step 8
|
|
|
|
//step 9
|
|
BigInteger N = BigInteger.One.ShiftLeft(t[m]-1).Divide(p[m+1]).Add(
|
|
Ym.ShiftLeft(t[m]-1).Divide(p[m+1].ShiftLeft(16*rm)));
|
|
|
|
if (N.TestBit(0))
|
|
{
|
|
N = N.Add(BigInteger.One);
|
|
}
|
|
|
|
//step 10
|
|
|
|
for(;;)
|
|
{
|
|
//step 11
|
|
BigInteger NByLastP = N.Multiply(p[m+1]);
|
|
|
|
if (NByLastP.BitLength > t[m])
|
|
{
|
|
goto step6; //step 12
|
|
}
|
|
|
|
p[m] = NByLastP.Add(BigInteger.One);
|
|
|
|
//step13
|
|
if (BigInteger.Two.ModPow(NByLastP, p[m]).CompareTo(BigInteger.One) == 0
|
|
&& BigInteger.Two.ModPow(N, p[m]).CompareTo(BigInteger.One) != 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
N = N.Add(BigInteger.Two);
|
|
}
|
|
|
|
if (--m < 0)
|
|
{
|
|
pq[0] = p[0];
|
|
pq[1] = p[1];
|
|
return y[0].IntValue; //return for procedure B step 2
|
|
}
|
|
|
|
break; //step 14
|
|
}
|
|
}
|
|
return y[0].IntValue;
|
|
}
|
|
|
|
//Procedure A'
|
|
private long procedure_Aa(long x0, long c, BigInteger[] pq, int size)
|
|
{
|
|
//Verify and perform condition: 0<x<2^32; 0<c<2^32; c - odd.
|
|
while(x0<0 || x0>4294967296L)
|
|
{
|
|
x0 = init_random.NextInt()*2;
|
|
}
|
|
|
|
while((c<0 || c>4294967296L) || (c/2==0))
|
|
{
|
|
c = init_random.NextInt()*2+1;
|
|
}
|
|
|
|
BigInteger C = BigInteger.ValueOf(c);
|
|
BigInteger constA32 = BigInteger.ValueOf(97781173);
|
|
|
|
//step1
|
|
BigInteger[] y = new BigInteger[1]; // begin length = 1
|
|
y[0] = BigInteger.ValueOf(x0);
|
|
|
|
//step 2
|
|
int[] t = new int[1]; // t - orders; begin length = 1
|
|
t[0] = size;
|
|
int s = 0;
|
|
for (int i=0; t[i]>=33; i++)
|
|
{
|
|
// extension array t
|
|
int[] tmp_t = new int[t.Length + 1]; ///////////////
|
|
Array.Copy(t,0,tmp_t,0,t.Length); // extension
|
|
t = new int[tmp_t.Length]; // array t
|
|
Array.Copy(tmp_t, 0, t, 0, tmp_t.Length); ///////////////
|
|
|
|
t[i+1] = t[i]/2;
|
|
s = i+1;
|
|
}
|
|
|
|
//step3
|
|
BigInteger[] p = new BigInteger[s+1];
|
|
p[s] = new BigInteger("8000000B",16); //set min prime number length 32 bit
|
|
|
|
int m = s-1; //step4
|
|
|
|
for (int i=0; i<s; i++)
|
|
{
|
|
int rm = t[m]/32; //step5
|
|
|
|
step6: for(;;)
|
|
{
|
|
//step 6
|
|
BigInteger[] tmp_y = new BigInteger[y.Length]; ////////////////
|
|
Array.Copy(y,0,tmp_y,0,y.Length); // extension
|
|
y = new BigInteger[rm+1]; // array y
|
|
Array.Copy(tmp_y,0,y,0,tmp_y.Length); ////////////////
|
|
|
|
for (int j=0; j<rm; j++)
|
|
{
|
|
y[j+1] = (y[j].Multiply(constA32).Add(C)).Mod(BigInteger.Two.Pow(32));
|
|
}
|
|
|
|
//step 7
|
|
BigInteger Ym = BigInteger.Zero;
|
|
for (int j=0; j<rm; j++)
|
|
{
|
|
Ym = Ym.Add(y[j].ShiftLeft(32*j));
|
|
}
|
|
|
|
y[0] = y[rm]; //step 8
|
|
|
|
//step 9
|
|
BigInteger N = BigInteger.One.ShiftLeft(t[m]-1).Divide(p[m+1]).Add(
|
|
Ym.ShiftLeft(t[m]-1).Divide(p[m+1].ShiftLeft(32*rm)));
|
|
|
|
if (N.TestBit(0))
|
|
{
|
|
N = N.Add(BigInteger.One);
|
|
}
|
|
|
|
//step 10
|
|
|
|
for(;;)
|
|
{
|
|
//step 11
|
|
BigInteger NByLastP = N.Multiply(p[m+1]);
|
|
|
|
if (NByLastP.BitLength > t[m])
|
|
{
|
|
goto step6; //step 12
|
|
}
|
|
|
|
p[m] = NByLastP.Add(BigInteger.One);
|
|
|
|
//step13
|
|
if (BigInteger.Two.ModPow(NByLastP, p[m]).CompareTo(BigInteger.One) == 0
|
|
&& BigInteger.Two.ModPow(N, p[m]).CompareTo(BigInteger.One) != 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
N = N.Add(BigInteger.Two);
|
|
}
|
|
|
|
if (--m < 0)
|
|
{
|
|
pq[0] = p[0];
|
|
pq[1] = p[1];
|
|
return y[0].LongValue; //return for procedure B' step 2
|
|
}
|
|
|
|
break; //step 14
|
|
}
|
|
}
|
|
return y[0].LongValue;
|
|
}
|
|
|
|
//Procedure B
|
|
private void procedure_B(int x0, int c, BigInteger[] pq)
|
|
{
|
|
//Verify and perform condition: 0<x<2^16; 0<c<2^16; c - odd.
|
|
while(x0<0 || x0>65536)
|
|
{
|
|
x0 = init_random.NextInt()/32768;
|
|
}
|
|
|
|
while((c<0 || c>65536) || (c/2==0))
|
|
{
|
|
c = init_random.NextInt()/32768 + 1;
|
|
}
|
|
|
|
BigInteger [] qp = new BigInteger[2];
|
|
BigInteger q = null, Q = null, p = null;
|
|
BigInteger C = BigInteger.ValueOf(c);
|
|
BigInteger constA16 = BigInteger.ValueOf(19381);
|
|
|
|
//step1
|
|
x0 = procedure_A(x0, c, qp, 256);
|
|
q = qp[0];
|
|
|
|
//step2
|
|
x0 = procedure_A(x0, c, qp, 512);
|
|
Q = qp[0];
|
|
|
|
BigInteger[] y = new BigInteger[65];
|
|
y[0] = BigInteger.ValueOf(x0);
|
|
|
|
const int tp = 1024;
|
|
|
|
BigInteger qQ = q.Multiply(Q);
|
|
|
|
step3:
|
|
for(;;)
|
|
{
|
|
//step 3
|
|
for (int j=0; j<64; j++)
|
|
{
|
|
y[j+1] = (y[j].Multiply(constA16).Add(C)).Mod(BigInteger.Two.Pow(16));
|
|
}
|
|
|
|
//step 4
|
|
BigInteger Y = BigInteger.Zero;
|
|
|
|
for (int j=0; j<64; j++)
|
|
{
|
|
Y = Y.Add(y[j].ShiftLeft(16*j));
|
|
}
|
|
|
|
y[0] = y[64]; //step 5
|
|
|
|
//step 6
|
|
BigInteger N = BigInteger.One.ShiftLeft(tp-1).Divide(qQ).Add(
|
|
Y.ShiftLeft(tp-1).Divide(qQ.ShiftLeft(1024)));
|
|
|
|
if (N.TestBit(0))
|
|
{
|
|
N = N.Add(BigInteger.One);
|
|
}
|
|
|
|
//step 7
|
|
|
|
for(;;)
|
|
{
|
|
//step 11
|
|
BigInteger qQN = qQ.Multiply(N);
|
|
|
|
if (qQN.BitLength > tp)
|
|
{
|
|
goto step3; //step 9
|
|
}
|
|
|
|
p = qQN.Add(BigInteger.One);
|
|
|
|
//step10
|
|
if (BigInteger.Two.ModPow(qQN, p).CompareTo(BigInteger.One) == 0
|
|
&& BigInteger.Two.ModPow(q.Multiply(N), p).CompareTo(BigInteger.One) != 0)
|
|
{
|
|
pq[0] = p;
|
|
pq[1] = q;
|
|
return;
|
|
}
|
|
|
|
N = N.Add(BigInteger.Two);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Procedure B'
|
|
private void procedure_Bb(long x0, long c, BigInteger[] pq)
|
|
{
|
|
//Verify and perform condition: 0<x<2^32; 0<c<2^32; c - odd.
|
|
while(x0<0 || x0>4294967296L)
|
|
{
|
|
x0 = init_random.NextInt()*2;
|
|
}
|
|
|
|
while((c<0 || c>4294967296L) || (c/2==0))
|
|
{
|
|
c = init_random.NextInt()*2+1;
|
|
}
|
|
|
|
BigInteger [] qp = new BigInteger[2];
|
|
BigInteger q = null, Q = null, p = null;
|
|
BigInteger C = BigInteger.ValueOf(c);
|
|
BigInteger constA32 = BigInteger.ValueOf(97781173);
|
|
|
|
//step1
|
|
x0 = procedure_Aa(x0, c, qp, 256);
|
|
q = qp[0];
|
|
|
|
//step2
|
|
x0 = procedure_Aa(x0, c, qp, 512);
|
|
Q = qp[0];
|
|
|
|
BigInteger[] y = new BigInteger[33];
|
|
y[0] = BigInteger.ValueOf(x0);
|
|
|
|
const int tp = 1024;
|
|
|
|
BigInteger qQ = q.Multiply(Q);
|
|
|
|
step3:
|
|
for(;;)
|
|
{
|
|
//step 3
|
|
for (int j=0; j<32; j++)
|
|
{
|
|
y[j+1] = (y[j].Multiply(constA32).Add(C)).Mod(BigInteger.Two.Pow(32));
|
|
}
|
|
|
|
//step 4
|
|
BigInteger Y = BigInteger.Zero;
|
|
for (int j=0; j<32; j++)
|
|
{
|
|
Y = Y.Add(y[j].ShiftLeft(32*j));
|
|
}
|
|
|
|
y[0] = y[32]; //step 5
|
|
|
|
//step 6
|
|
BigInteger N = BigInteger.One.ShiftLeft(tp-1).Divide(qQ).Add(
|
|
Y.ShiftLeft(tp-1).Divide(qQ.ShiftLeft(1024)));
|
|
|
|
if (N.TestBit(0))
|
|
{
|
|
N = N.Add(BigInteger.One);
|
|
}
|
|
|
|
//step 7
|
|
|
|
for(;;)
|
|
{
|
|
//step 11
|
|
BigInteger qQN = qQ.Multiply(N);
|
|
|
|
if (qQN.BitLength > tp)
|
|
{
|
|
goto step3; //step 9
|
|
}
|
|
|
|
p = qQN.Add(BigInteger.One);
|
|
|
|
//step10
|
|
if (BigInteger.Two.ModPow(qQN, p).CompareTo(BigInteger.One) == 0
|
|
&& BigInteger.Two.ModPow(q.Multiply(N), p).CompareTo(BigInteger.One) != 0)
|
|
{
|
|
pq[0] = p;
|
|
pq[1] = q;
|
|
return;
|
|
}
|
|
|
|
N = N.Add(BigInteger.Two);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Procedure C
|
|
* procedure generates the a value from the given p,q,
|
|
* returning the a value.
|
|
*/
|
|
private BigInteger procedure_C(BigInteger p, BigInteger q)
|
|
{
|
|
BigInteger pSub1 = p.Subtract(BigInteger.One);
|
|
BigInteger pSub1Divq = pSub1.Divide(q);
|
|
|
|
for(;;)
|
|
{
|
|
BigInteger d = new BigInteger(p.BitLength, init_random);
|
|
|
|
// 1 < d < p-1
|
|
if (d.CompareTo(BigInteger.One) > 0 && d.CompareTo(pSub1) < 0)
|
|
{
|
|
BigInteger a = d.ModPow(pSub1Divq, p);
|
|
|
|
if (a.CompareTo(BigInteger.One) != 0)
|
|
{
|
|
return a;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* which generates the p , q and a values from the given parameters,
|
|
* returning the Gost3410Parameters object.
|
|
*/
|
|
public Gost3410Parameters GenerateParameters()
|
|
{
|
|
BigInteger [] pq = new BigInteger[2];
|
|
BigInteger q = null, p = null, a = null;
|
|
|
|
int x0, c;
|
|
long x0L, cL;
|
|
|
|
if (typeproc==1)
|
|
{
|
|
x0 = init_random.NextInt();
|
|
c = init_random.NextInt();
|
|
|
|
switch(size)
|
|
{
|
|
case 512:
|
|
procedure_A(x0, c, pq, 512);
|
|
break;
|
|
case 1024:
|
|
procedure_B(x0, c, pq);
|
|
break;
|
|
default:
|
|
throw new ArgumentException("Ooops! key size 512 or 1024 bit.");
|
|
}
|
|
p = pq[0]; q = pq[1];
|
|
a = procedure_C(p, q);
|
|
//System.out.println("p:"+p.toString(16)+"\n"+"q:"+q.toString(16)+"\n"+"a:"+a.toString(16));
|
|
//System.out.println("p:"+p+"\n"+"q:"+q+"\n"+"a:"+a);
|
|
return new Gost3410Parameters(p, q, a, new Gost3410ValidationParameters(x0, c));
|
|
}
|
|
else
|
|
{
|
|
x0L = init_random.NextLong();
|
|
cL = init_random.NextLong();
|
|
|
|
switch(size)
|
|
{
|
|
case 512:
|
|
procedure_Aa(x0L, cL, pq, 512);
|
|
break;
|
|
case 1024:
|
|
procedure_Bb(x0L, cL, pq);
|
|
break;
|
|
default:
|
|
throw new InvalidOperationException("Ooops! key size 512 or 1024 bit.");
|
|
}
|
|
p = pq[0]; q = pq[1];
|
|
a = procedure_C(p, q);
|
|
//System.out.println("p:"+p.toString(16)+"\n"+"q:"+q.toString(16)+"\n"+"a:"+a.toString(16));
|
|
//System.out.println("p:"+p+"\n"+"q:"+q+"\n"+"a:"+a);
|
|
return new Gost3410Parameters(p, q, a, new Gost3410ValidationParameters(x0L, cL));
|
|
}
|
|
}
|
|
}
|
|
}
|