185 lines
5.5 KiB
C#
185 lines
5.5 KiB
C#
using System;
|
|
|
|
using Org.BouncyCastle.Crypto.Parameters;
|
|
using Org.BouncyCastle.Crypto.Digests;
|
|
using Org.BouncyCastle.Math;
|
|
using Org.BouncyCastle.Security;
|
|
|
|
namespace Org.BouncyCastle.Crypto.Generators
|
|
{
|
|
/**
|
|
* Generate suitable parameters for DSA, in line with FIPS 186-2.
|
|
*/
|
|
public class DsaParametersGenerator
|
|
{
|
|
private int size;
|
|
private int certainty;
|
|
private SecureRandom random;
|
|
|
|
/**
|
|
* initialise the key generator.
|
|
*
|
|
* @param size size of the key (range 2^512 -> 2^1024 - 64 bit increments)
|
|
* @param certainty measure of robustness of prime (for FIPS 186-2 compliance this should be at least 80).
|
|
* @param random random byte source.
|
|
*/
|
|
public void Init(
|
|
int size,
|
|
int certainty,
|
|
SecureRandom random)
|
|
{
|
|
if (!IsValidDsaStrength(size))
|
|
throw new ArgumentException("size must be from 512 - 1024 and a multiple of 64", "size");
|
|
|
|
this.size = size;
|
|
this.certainty = certainty;
|
|
this.random = random;
|
|
}
|
|
|
|
/**
|
|
* add value to b, returning the result in a. The a value is treated
|
|
* as a BigInteger of length (a.Length * 8) bits. The result is
|
|
* modulo 2^a.Length in case of overflow.
|
|
*/
|
|
private static void Add(
|
|
byte[] a,
|
|
byte[] b,
|
|
int value)
|
|
{
|
|
int x = (b[b.Length - 1] & 0xff) + value;
|
|
|
|
a[b.Length - 1] = (byte)x;
|
|
x = (int) ((uint) x >>8);
|
|
|
|
for (int i = b.Length - 2; i >= 0; i--)
|
|
{
|
|
x += (b[i] & 0xff);
|
|
a[i] = (byte)x;
|
|
x = (int) ((uint) x >>8);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* which Generates the p and g values from the given parameters,
|
|
* returning the DsaParameters object.
|
|
* <p>
|
|
* Note: can take a while...</p>
|
|
*/
|
|
public DsaParameters GenerateParameters()
|
|
{
|
|
byte[] seed = new byte[20];
|
|
byte[] part1 = new byte[20];
|
|
byte[] part2 = new byte[20];
|
|
byte[] u = new byte[20];
|
|
Sha1Digest sha1 = new Sha1Digest();
|
|
int n = (size - 1) / 160;
|
|
byte[] w = new byte[size / 8];
|
|
|
|
BigInteger q = null, p = null, g = null;
|
|
int counter = 0;
|
|
bool primesFound = false;
|
|
|
|
while (!primesFound)
|
|
{
|
|
do
|
|
{
|
|
random.NextBytes(seed);
|
|
|
|
sha1.BlockUpdate(seed, 0, seed.Length);
|
|
|
|
sha1.DoFinal(part1, 0);
|
|
|
|
Array.Copy(seed, 0, part2, 0, seed.Length);
|
|
|
|
Add(part2, seed, 1);
|
|
|
|
sha1.BlockUpdate(part2, 0, part2.Length);
|
|
|
|
sha1.DoFinal(part2, 0);
|
|
|
|
for (int i = 0; i != u.Length; i++)
|
|
{
|
|
u[i] = (byte)(part1[i] ^ part2[i]);
|
|
}
|
|
|
|
u[0] |= (byte)0x80;
|
|
u[19] |= (byte)0x01;
|
|
|
|
q = new BigInteger(1, u);
|
|
}
|
|
while (!q.IsProbablePrime(certainty));
|
|
|
|
counter = 0;
|
|
|
|
int offset = 2;
|
|
|
|
while (counter < 4096)
|
|
{
|
|
for (int k = 0; k < n; k++)
|
|
{
|
|
Add(part1, seed, offset + k);
|
|
sha1.BlockUpdate(part1, 0, part1.Length);
|
|
sha1.DoFinal(part1, 0);
|
|
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
|
|
}
|
|
|
|
Add(part1, seed, offset + n);
|
|
sha1.BlockUpdate(part1, 0, part1.Length);
|
|
sha1.DoFinal(part1, 0);
|
|
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
|
|
|
|
w[0] |= (byte)0x80;
|
|
|
|
BigInteger x = new BigInteger(1, w);
|
|
|
|
BigInteger c = x.Mod(q.ShiftLeft(1));
|
|
|
|
p = x.Subtract(c.Subtract(BigInteger.One));
|
|
|
|
if (p.TestBit(size - 1))
|
|
{
|
|
if (p.IsProbablePrime(certainty))
|
|
{
|
|
primesFound = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
counter += 1;
|
|
offset += n + 1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// calculate the generator g
|
|
//
|
|
BigInteger pMinusOneOverQ = p.Subtract(BigInteger.One).Divide(q);
|
|
|
|
for (;;)
|
|
{
|
|
BigInteger h = new BigInteger(size, random);
|
|
if (h.CompareTo(BigInteger.One) <= 0 || h.CompareTo(p.Subtract(BigInteger.One)) >= 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
g = h.ModPow(pMinusOneOverQ, p);
|
|
if (g.CompareTo(BigInteger.One) <= 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
|
|
}
|
|
|
|
private static bool IsValidDsaStrength(
|
|
int strength)
|
|
{
|
|
return strength >= 512 && strength <= 1024 && strength % 64 == 0;
|
|
}
|
|
}
|
|
}
|