using System; // IntHashtable - a Hashtable that uses ints as the keys // // This is 90% based on JavaSoft's java.util.Hashtable. // // Visit the ACME Labs Java page for up-to-date versions of this and other // fine Java utilities: http://www.acme.com/java/ namespace iTextSharp.text.pdf { /// A Hashtable that uses ints as the keys. //

// Use just like java.util.Hashtable, except that the keys must be ints. // This is much faster than creating a new int for each access. //

// Fetch the software.
// Fetch the entire Acme package. //

// @see java.util.Hashtable public class IntHashtable { /// The hash table data. private IntHashtableEntry[] table; /// The total number of entries in the hash table. private int count; /// Rehashes the table when count exceeds this threshold. private int threshold; /// The load factor for the hashtable. private float loadFactor; /// Constructs a new, empty hashtable with the specified initial // capacity and the specified load factor. // @param initialCapacity the initial number of buckets // @param loadFactor a number between 0.0 and 1.0, it defines // the threshold for rehashing the hashtable into // a bigger one. // @exception IllegalArgumentException If the initial capacity // is less than or equal to zero. // @exception IllegalArgumentException If the load factor is // less than or equal to zero. public IntHashtable( int initialCapacity, float loadFactor ) { if ( initialCapacity <= 0 || loadFactor <= 0.0 ) throw new ArgumentException(); this.loadFactor = loadFactor; table = new IntHashtableEntry[initialCapacity]; threshold = (int) ( initialCapacity * loadFactor ); } /// Constructs a new, empty hashtable with the specified initial // capacity. // @param initialCapacity the initial number of buckets public IntHashtable( int initialCapacity ) : this( initialCapacity, 0.75f ) {} /// Constructs a new, empty hashtable. A default capacity and load factor // is used. Note that the hashtable will automatically grow when it gets // full. public IntHashtable() : this( 101, 0.75f ) {} /// Returns the number of elements contained in the hashtable. public int Size { get { return count; } } /// Returns true if the hashtable contains no elements. public bool IsEmpty() { return count == 0; } /// Returns true if the specified object is an element of the hashtable. // This operation is more expensive than the ContainsKey() method. // @param value the value that we are looking for // @exception NullPointerException If the value being searched // for is equal to null. // @see IntHashtable#containsKey public bool Contains( int value ) { IntHashtableEntry[] tab = table; for ( int i = tab.Length ; i-- > 0 ; ) { for ( IntHashtableEntry e = tab[i] ; e != null ; e = e.next ) { if ( e.value == value ) return true; } } return false; } /// Returns true if the collection contains an element for the key. // @param key the key that we are looking for // @see IntHashtable#contains public bool ContainsKey( int key ) { IntHashtableEntry[] tab = table; int hash = key; int index = ( hash & 0x7FFFFFFF ) % tab.Length; for ( IntHashtableEntry e = tab[index] ; e != null ; e = e.next ) { if ( e.hash == hash && e.key == key ) return true; } return false; } /// Gets the object associated with the specified key in the // hashtable. // @param key the specified key // @returns the element for the key or null if the key // is not defined in the hash table. // @see IntHashtable#put public int this[int key] { get { IntHashtableEntry[] tab = table; int hash = key; int index = ( hash & 0x7FFFFFFF ) % tab.Length; for ( IntHashtableEntry e = tab[index] ; e != null ; e = e.next ) { if ( e.hash == hash && e.key == key ) return e.value; } return 0; } set { // Makes sure the key is not already in the hashtable. IntHashtableEntry[] tab = table; int hash = key; int index = ( hash & 0x7FFFFFFF ) % tab.Length; for ( IntHashtableEntry e = tab[index] ; e != null ; e = e.next ) { if ( e.hash == hash && e.key == key ) { e.value = value; return; } } if ( count >= threshold ) { // Rehash the table if the threshold is exceeded. Rehash(); this[key] = value; return; } // Creates the new entry. IntHashtableEntry en = new IntHashtableEntry(); en.hash = hash; en.key = key; en.value = value; en.next = tab[index]; tab[index] = en; ++count; } } /// Rehashes the content of the table into a bigger table. // This method is called automatically when the hashtable's // size exceeds the threshold. protected void Rehash() { int oldCapacity = table.Length; IntHashtableEntry[] oldTable = table; int newCapacity = oldCapacity * 2 + 1; IntHashtableEntry[] newTable = new IntHashtableEntry[newCapacity]; threshold = (int) ( newCapacity * loadFactor ); table = newTable; for ( int i = oldCapacity ; i-- > 0 ; ) { for ( IntHashtableEntry old = oldTable[i] ; old != null ; ) { IntHashtableEntry e = old; old = old.next; int index = ( e.hash & 0x7FFFFFFF ) % newCapacity; e.next = newTable[index]; newTable[index] = e; } } } /// Removes the element corresponding to the key. Does nothing if the // key is not present. // @param key the key that needs to be removed // @return the value of key, or null if the key was not found. public int Remove( int key ) { IntHashtableEntry[] tab = table; int hash = key; int index = ( hash & 0x7FFFFFFF ) % tab.Length; for ( IntHashtableEntry e = tab[index], prev = null ; e != null ; prev = e, e = e.next ) { if ( e.hash == hash && e.key == key ) { if ( prev != null ) prev.next = e.next; else tab[index] = e.next; --count; return e.value; } } return 0; } /// Clears the hash table so that it has no more elements in it. public void Clear() { IntHashtableEntry[] tab = table; for ( int index = tab.Length; --index >= 0; ) tab[index] = null; count = 0; } public IntHashtable Clone() { IntHashtable t = new IntHashtable(); t.count = count; t.loadFactor = loadFactor; t.threshold = threshold; t.table = new IntHashtableEntry[table.Length]; for (int i = table.Length ; i-- > 0 ; ) { t.table[i] = (table[i] != null) ? (IntHashtableEntry)table[i].Clone() : null; } return t; } public int[] ToOrderedKeys() { int[] res = GetKeys(); Array.Sort(res); return res; } public int[] GetKeys() { int[] res = new int[count]; int ptr = 0; int index = table.Length; IntHashtableEntry entry = null; while (true) { if (entry == null) while ((index-- > 0) && ((entry = table[index]) == null)); if (entry == null) break; IntHashtableEntry e = entry; entry = e.next; res[ptr++] = e.key; } return res; } public class IntHashtableEntry { internal int hash; internal int key; internal int value; internal IntHashtableEntry next; public int Key { get { return key; } } public int Value { get { return value; } } protected internal IntHashtableEntry Clone() { IntHashtableEntry entry = new IntHashtableEntry(); entry.hash = hash; entry.key = key; entry.value = value; entry.next = (next != null) ? next.Clone() : null; return entry; } } public IntHashtableIterator GetEntryIterator() { return new IntHashtableIterator(table); } public class IntHashtableIterator { // boolean keys; int index; IntHashtableEntry[] table; IntHashtableEntry entry; internal IntHashtableIterator(IntHashtableEntry[] table) { this.table = table; this.index = table.Length; } public bool HasNext() { if (entry != null) { return true; } while (index-- > 0) { if ((entry = table[index]) != null) { return true; } } return false; } public IntHashtableEntry Next() { if (entry == null) { while ((index-- > 0) && ((entry = table[index]) == null)); } if (entry != null) { IntHashtableEntry e = entry; entry = e.next; return e; } throw new InvalidOperationException("IntHashtableIterator"); } } } }