Initial Commit

This commit is contained in:
2023-06-21 12:46:23 -04:00
commit c70248a520
1352 changed files with 336780 additions and 0 deletions

View File

@@ -0,0 +1,158 @@
using System;
using System.Collections;
using System.IO;
using System.Text;
using Org.BouncyCastle.Asn1;
using Org.BouncyCastle.Crypto.Signers;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
public class DsaDigestSigner
: ISigner
{
private readonly IDigest digest;
private readonly IDsa dsaSigner;
private bool forSigning;
public DsaDigestSigner(
IDsa signer,
IDigest digest)
{
this.digest = digest;
this.dsaSigner = signer;
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "with" + dsaSigner.AlgorithmName; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
this.forSigning = forSigning;
AsymmetricKeyParameter k;
if (parameters is ParametersWithRandom)
{
k = (AsymmetricKeyParameter)((ParametersWithRandom)parameters).Parameters;
}
else
{
k = (AsymmetricKeyParameter)parameters;
}
if (forSigning && !k.IsPrivate)
{
throw new InvalidKeyException("Signing Requires Private Key.");
}
if (!forSigning && k.IsPrivate)
{
throw new InvalidKeyException("Verification Requires Public Key.");
}
Reset();
dsaSigner.Init(forSigning, parameters);
}
/**
* update the internal digest with the byte b
*/
public void Update(
byte input)
{
digest.Update(input);
}
/**
* update the internal digest with the byte array in
*/
public void BlockUpdate(
byte[] input,
int inOff,
int length)
{
digest.BlockUpdate(input, inOff, length);
}
/**
* Generate a signature for the message we've been loaded with using
* the key we were initialised with.
*/
public byte[] GenerateSignature()
{
if (!forSigning)
throw new InvalidOperationException("DSADigestSigner not initialised for signature generation.");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
try
{
BigInteger[] sig = dsaSigner.GenerateSignature(hash);
return DerEncode(sig[0], sig[1]);
}
catch (Exception e)
{
throw new SignatureException(e.Message, e);
}
}
/// <returns>true if the internal state represents the signature described in the passed in array.</returns>
public bool VerifySignature(
byte[] signature)
{
if (forSigning)
throw new InvalidOperationException("DSADigestSigner not initialised for verification");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
BigInteger[] sig;
try
{
sig = DerDecode(signature);
}
catch (Exception e)
{
throw new SignatureException("error decoding signature bytes.", e);
}
return dsaSigner.VerifySignature(hash, sig[0], sig[1]);
}
/// <summary>Reset the internal state</summary>
public void Reset()
{
digest.Reset();
}
private byte[] DerEncode(
BigInteger r,
BigInteger s)
{
return new DerSequence(new DerInteger(r), new DerInteger(s)).GetDerEncoded();
}
private BigInteger[] DerDecode(
byte[] encoding)
{
Asn1Sequence s = (Asn1Sequence) Asn1Object.FromByteArray(encoding);
return new BigInteger[]
{
((DerInteger) s[0]).Value,
((DerInteger) s[1]).Value
};
}
}
}

View File

@@ -0,0 +1,136 @@
using System;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Parameters;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* The Digital Signature Algorithm - as described in "Handbook of Applied
* Cryptography", pages 452 - 453.
*/
public class DsaSigner
: IDsa
{
private DsaKeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "DSA"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is DsaPrivateKeyParameters))
throw new InvalidKeyException("DSA private key required for signing");
this.key = (DsaPrivateKeyParameters) parameters;
}
else
{
if (!(parameters is DsaPublicKeyParameters))
throw new InvalidKeyException("DSA public key required for verification");
this.key = (DsaPublicKeyParameters) parameters;
}
}
/**
* Generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
DsaParameters parameters = key.Parameters;
BigInteger q = parameters.Q;
BigInteger m = calculateE(q, message);
BigInteger k;
do
{
k = new BigInteger(q.BitLength, random);
}
while (k.CompareTo(q) >= 0);
BigInteger r = parameters.G.ModPow(k, parameters.P).Mod(q);
k = k.ModInverse(q).Multiply(
m.Add(((DsaPrivateKeyParameters)key).X.Multiply(r)));
BigInteger s = k.Mod(q);
return new BigInteger[]{ r, s };
}
/**
* return true if the value r and s represent a DSA signature for
* the passed in message for standard DSA the message should be a
* SHA-1 hash of the real message to be verified.
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
DsaParameters parameters = key.Parameters;
BigInteger q = parameters.Q;
BigInteger m = calculateE(q, message);
if (r.SignValue <= 0 || q.CompareTo(r) <= 0)
{
return false;
}
if (s.SignValue <= 0 || q.CompareTo(s) <= 0)
{
return false;
}
BigInteger w = s.ModInverse(q);
BigInteger u1 = m.Multiply(w).Mod(q);
BigInteger u2 = r.Multiply(w).Mod(q);
BigInteger p = parameters.P;
u1 = parameters.G.ModPow(u1, p);
u2 = ((DsaPublicKeyParameters)key).Y.ModPow(u2, p);
BigInteger v = u1.Multiply(u2).Mod(p).Mod(q);
return v.Equals(r);
}
private BigInteger calculateE(
BigInteger n,
byte[] message)
{
int length = System.Math.Min(message.Length, n.BitLength / 8);
return new BigInteger(1, message, 0, length);
}
}
}

View File

@@ -0,0 +1,150 @@
using System;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Parameters;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* EC-DSA as described in X9.62
*/
public class ECDsaSigner
: IDsa
{
private ECKeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "ECDSA"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom) parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is ECPrivateKeyParameters))
throw new InvalidKeyException("EC private key required for signing");
this.key = (ECPrivateKeyParameters) parameters;
}
else
{
if (!(parameters is ECPublicKeyParameters))
throw new InvalidKeyException("EC public key required for verification");
this.key = (ECPublicKeyParameters) parameters;
}
}
// 5.3 pg 28
/**
* Generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
BigInteger n = key.Parameters.N;
BigInteger e = calculateE(n, message);
BigInteger r = null;
BigInteger s = null;
// 5.3.2
do // Generate s
{
BigInteger k = null;
do // Generate r
{
do
{
k = new BigInteger(n.BitLength, random);
}
while (k.SignValue == 0);
ECPoint p = key.Parameters.G.Multiply(k);
// 5.3.3
BigInteger x = p.X.ToBigInteger();
r = x.Mod(n);
}
while (r.SignValue == 0);
BigInteger d = ((ECPrivateKeyParameters)key).D;
s = k.ModInverse(n).Multiply(e.Add(d.Multiply(r))).Mod(n);
}
while (s.SignValue == 0);
return new BigInteger[]{ r, s };
}
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if (r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = calculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters) key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);
BigInteger v = point.X.ToBigInteger().Mod(n);
return v.Equals(r);
}
private BigInteger calculateE(
BigInteger n,
byte[] message)
{
int length = System.Math.Min(message.Length, n.BitLength / 8);
return new BigInteger(1, message, 0, length);
}
}
}

View File

@@ -0,0 +1,154 @@
using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* GOST R 34.10-2001 Signature Algorithm
*/
public class ECGost3410Signer
: IDsa
{
private ECKeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "ECGOST3410"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is ECPrivateKeyParameters))
throw new InvalidKeyException("EC private key required for signing");
this.key = (ECPrivateKeyParameters) parameters;
}
else
{
if (!(parameters is ECPublicKeyParameters))
throw new InvalidKeyException("EC public key required for verification");
this.key = (ECPublicKeyParameters)parameters;
}
}
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional GOST3410 the message should be a GOST3411
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
BigInteger n = key.Parameters.N;
BigInteger r = null;
BigInteger s = null;
do // generate s
{
BigInteger k = null;
do // generate r
{
do
{
k = new BigInteger(n.BitLength, random);
}
while (k.SignValue == 0);
ECPoint p = key.Parameters.G.Multiply(k);
BigInteger x = p.X.ToBigInteger();
r = x.Mod(n);
}
while (r.SignValue == 0);
BigInteger d = ((ECPrivateKeyParameters)key).D;
s = (k.Multiply(e)).Add(d.Multiply(r)).Mod(n);
}
while (s.SignValue == 0);
return new BigInteger[]{ r, s };
}
/**
* return true if the value r and s represent a GOST3410 signature for
* the passed in message (for standard GOST3410 the message should be
* a GOST3411 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
BigInteger n = key.Parameters.N;
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.CompareTo(BigInteger.One) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger v = e.ModInverse(n);
BigInteger z1 = s.Multiply(v).Mod(n);
BigInteger z2 = (n.Subtract(r)).Multiply(v).Mod(n);
ECPoint G = key.Parameters.G; // P
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, z1, Q, z2);
BigInteger R = point.X.ToBigInteger().Mod(n);
return R.Equals(r);
}
}
}

View File

@@ -0,0 +1,186 @@
using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* EC-NR as described in IEEE 1363-2000
*/
public class ECNRSigner
: IDsa
{
private bool forSigning;
private ECKeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "ECNR"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
this.forSigning = forSigning;
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom) parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is ECPrivateKeyParameters))
throw new InvalidKeyException("EC private key required for signing");
this.key = (ECPrivateKeyParameters) parameters;
}
else
{
if (!(parameters is ECPublicKeyParameters))
throw new InvalidKeyException("EC public key required for verification");
this.key = (ECPublicKeyParameters) parameters;
}
}
// Section 7.2.5 ECSP-NR, pg 34
/**
* generate a signature for the given message using the key we were
* initialised with. Generally, the order of the curve should be at
* least as long as the hash of the message of interest, and with
* ECNR it *must* be at least as long.
*
* @param digest the digest to be signed.
* @exception DataLengthException if the digest is longer than the key allows
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
if (!this.forSigning)
{
// not properly initilaized... deal with it
throw new InvalidOperationException("not initialised for signing");
}
BigInteger n = ((ECPrivateKeyParameters) this.key).Parameters.N;
int nBitLength = n.BitLength;
BigInteger e = new BigInteger(1, message);
int eBitLength = e.BitLength;
ECPrivateKeyParameters privKey = (ECPrivateKeyParameters)key;
if (eBitLength > nBitLength)
{
throw new DataLengthException("input too large for ECNR key.");
}
BigInteger r = null;
BigInteger s = null;
AsymmetricCipherKeyPair tempPair;
do // generate r
{
// generate another, but very temporary, key pair using
// the same EC parameters
ECKeyPairGenerator keyGen = new ECKeyPairGenerator();
keyGen.Init(new ECKeyGenerationParameters(privKey.Parameters, this.random));
tempPair = keyGen.GenerateKeyPair();
// BigInteger Vx = tempPair.getPublic().getW().getAffineX();
ECPublicKeyParameters V = (ECPublicKeyParameters) tempPair.Public; // get temp's public key
BigInteger Vx = V.Q.X.ToBigInteger(); // get the point's x coordinate
r = Vx.Add(e).Mod(n);
}
while (r.SignValue == 0);
// generate s
BigInteger x = privKey.D; // private key value
BigInteger u = ((ECPrivateKeyParameters) tempPair.Private).D; // temp's private key value
s = u.Subtract(r.Multiply(x)).Mod(n);
return new BigInteger[]{ r, s };
}
// Section 7.2.6 ECVP-NR, pg 35
/**
* return true if the value r and s represent a signature for the
* message passed in. Generally, the order of the curve should be at
* least as long as the hash of the message of interest, and with
* ECNR, it *must* be at least as long. But just in case the signer
* applied mod(n) to the longer digest, this implementation will
* apply mod(n) during verification.
*
* @param digest the digest to be verified.
* @param r the r value of the signature.
* @param s the s value of the signature.
* @exception DataLengthException if the digest is longer than the key allows
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
if (this.forSigning)
{
// not properly initilaized... deal with it
throw new InvalidOperationException("not initialised for verifying");
}
ECPublicKeyParameters pubKey = (ECPublicKeyParameters)key;
BigInteger n = pubKey.Parameters.N;
int nBitLength = n.BitLength;
BigInteger e = new BigInteger(1, message);
int eBitLength = e.BitLength;
if (eBitLength > nBitLength)
{
throw new DataLengthException("input too large for ECNR key.");
}
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// TODO So why is this different from the spec?
// s in the range [0,n-1] NB: ECNR spec says 0
if (s.CompareTo(BigInteger.Zero) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
// compute P = sG + rW
ECPoint G = pubKey.Parameters.G;
ECPoint W = pubKey.Q;
// calculate P using Bouncy math
ECPoint P = ECAlgorithms.SumOfTwoMultiplies(G, s, W, r);
BigInteger x = P.X.ToBigInteger();
BigInteger t = r.Subtract(x).Mod(n);
return t.Equals(e);
}
}
}

View File

@@ -0,0 +1,145 @@
using System;
using System.Collections;
using System.IO;
using System.Text;
using Org.BouncyCastle.Asn1;
using Org.BouncyCastle.Crypto.Signers;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
public class Gost3410DigestSigner
: ISigner
{
private readonly IDigest digest;
private readonly IDsa dsaSigner;
private bool forSigning;
public Gost3410DigestSigner(
IDsa signer,
IDigest digest)
{
this.dsaSigner = signer;
this.digest = digest;
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "with" + dsaSigner.AlgorithmName; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
this.forSigning = forSigning;
AsymmetricKeyParameter k;
if (parameters is ParametersWithRandom)
{
k = (AsymmetricKeyParameter)((ParametersWithRandom)parameters).Parameters;
}
else
{
k = (AsymmetricKeyParameter)parameters;
}
if (forSigning && !k.IsPrivate)
{
throw new InvalidKeyException("Signing Requires Private Key.");
}
if (!forSigning && k.IsPrivate)
{
throw new InvalidKeyException("Verification Requires Public Key.");
}
Reset();
dsaSigner.Init(forSigning, parameters);
}
/**
* update the internal digest with the byte b
*/
public void Update(
byte input)
{
digest.Update(input);
}
/**
* update the internal digest with the byte array in
*/
public void BlockUpdate(
byte[] input,
int inOff,
int length)
{
digest.BlockUpdate(input, inOff, length);
}
/**
* Generate a signature for the message we've been loaded with using
* the key we were initialised with.
*/
public byte[] GenerateSignature()
{
if (!forSigning)
throw new InvalidOperationException("GOST3410DigestSigner not initialised for signature generation.");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
try
{
BigInteger[] sig = dsaSigner.GenerateSignature(hash);
byte[] sigBytes = new byte[64];
// TODO Add methods to allow writing BigInteger to existing byte array?
byte[] r = sig[0].ToByteArrayUnsigned();
byte[] s = sig[1].ToByteArrayUnsigned();
s.CopyTo(sigBytes, 32 - s.Length);
r.CopyTo(sigBytes, 64 - r.Length);
return sigBytes;
}
catch (Exception e)
{
throw new SignatureException(e.Message, e);
}
}
/// <returns>true if the internal state represents the signature described in the passed in array.</returns>
public bool VerifySignature(
byte[] signature)
{
if (forSigning)
throw new InvalidOperationException("DSADigestSigner not initialised for verification");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
BigInteger R, S;
try
{
R = new BigInteger(1, signature, 32, 32);
S = new BigInteger(1, signature, 0, 32);
}
catch (Exception e)
{
throw new SignatureException("error decoding signature bytes.", e);
}
return dsaSigner.VerifySignature(hash, R, S);
}
/// <summary>Reset the internal state</summary>
public void Reset()
{
digest.Reset();
}
}
}

View File

@@ -0,0 +1,132 @@
using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* Gost R 34.10-94 Signature Algorithm
*/
public class Gost3410Signer
: IDsa
{
private Gost3410KeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "GOST3410"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is Gost3410PrivateKeyParameters))
throw new InvalidKeyException("GOST3410 private key required for signing");
this.key = (Gost3410PrivateKeyParameters) parameters;
}
else
{
if (!(parameters is Gost3410PublicKeyParameters))
throw new InvalidKeyException("GOST3410 public key required for signing");
this.key = (Gost3410PublicKeyParameters) parameters;
}
}
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional Gost3410 the message should be a Gost3411
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger m = new BigInteger(1, mRev);
Gost3410Parameters parameters = key.Parameters;
BigInteger k;
do
{
k = new BigInteger(parameters.Q.BitLength, random);
}
while (k.CompareTo(parameters.Q) >= 0);
BigInteger r = parameters.A.ModPow(k, parameters.P).Mod(parameters.Q);
BigInteger s = k.Multiply(m).
Add(((Gost3410PrivateKeyParameters)key).X.Multiply(r)).
Mod(parameters.Q);
return new BigInteger[]{ r, s };
}
/**
* return true if the value r and s represent a Gost3410 signature for
* the passed in message for standard Gost3410 the message should be a
* Gost3411 hash of the real message to be verified.
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger m = new BigInteger(1, mRev);
Gost3410Parameters parameters = key.Parameters;
if (r.SignValue < 0 || parameters.Q.CompareTo(r) <= 0)
{
return false;
}
if (s.SignValue < 0 || parameters.Q.CompareTo(s) <= 0)
{
return false;
}
BigInteger v = m.ModPow(parameters.Q.Subtract(BigInteger.Two), parameters.Q);
BigInteger z1 = s.Multiply(v).Mod(parameters.Q);
BigInteger z2 = (parameters.Q.Subtract(r)).Multiply(v).Mod(parameters.Q);
z1 = parameters.A.ModPow(z1, parameters.P);
z2 = ((Gost3410PublicKeyParameters)key).Y.ModPow(z2, parameters.P);
BigInteger u = z1.Multiply(z2).Mod(parameters.P).Mod(parameters.Q);
return u.Equals(r);
}
}
}

View File

@@ -0,0 +1,561 @@
using System;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
/// <summary> ISO9796-2 - mechanism using a hash function with recovery (scheme 2 and 3).
/// <p>
/// Note: the usual length for the salt is the length of the hash
/// function used in bytes.</p>
/// </summary>
public class Iso9796d2PssSigner
: ISignerWithRecovery
{
/// <summary>
/// Return a reference to the recoveredMessage message.
/// </summary>
/// <returns>The full/partial recoveredMessage message.</returns>
/// <seealso cref="ISignerWithRecovery.GetRecoveredMessage"/>
public byte[] GetRecoveredMessage()
{
return recoveredMessage;
}
public const int TrailerImplicit = 0xBC;
public const int TrailerRipeMD160 = 0x31CC;
public const int TrailerRipeMD128 = 0x32CC;
public const int TrailerSha1 = 0x33CC;
private IDigest digest;
private IAsymmetricBlockCipher cipher;
private SecureRandom random;
private byte[] standardSalt;
private int hLen;
private int trailer;
private int keyBits;
private byte[] block;
private byte[] mBuf;
private int messageLength;
private readonly int saltLength;
private bool fullMessage;
private byte[] recoveredMessage;
/// <summary>
/// Generate a signer for the with either implicit or explicit trailers
/// for ISO9796-2, scheme 2 or 3.
/// </summary>
/// <param name="cipher">base cipher to use for signature creation/verification</param>
/// <param name="digest">digest to use.</param>
/// <param name="saltLength">length of salt in bytes.</param>
/// <param name="isImplicit">whether or not the trailer is implicit or gives the hash.</param>
public Iso9796d2PssSigner(
IAsymmetricBlockCipher cipher,
IDigest digest,
int saltLength,
bool isImplicit)
{
this.cipher = cipher;
this.digest = digest;
this.hLen = digest.GetDigestSize();
this.saltLength = saltLength;
if (isImplicit)
{
trailer = TrailerImplicit;
}
else
{
if (digest is Sha1Digest)
{
trailer = TrailerSha1;
}
else if (digest is RipeMD160Digest)
{
trailer = TrailerRipeMD160;
}
else if (digest is RipeMD128Digest)
{
trailer = TrailerRipeMD128;
}
else
{
throw new ArgumentException("no valid trailer for digest");
}
}
}
/// <summary> Constructor for a signer with an explicit digest trailer.
///
/// </summary>
/// <param name="cipher">cipher to use.
/// </param>
/// <param name="digest">digest to sign with.
/// </param>
/// <param name="saltLength">length of salt in bytes.
/// </param>
public Iso9796d2PssSigner(
IAsymmetricBlockCipher cipher,
IDigest digest,
int saltLength)
: this(cipher, digest, saltLength, false)
{
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "with" + "ISO9796-2S2"; }
}
/// <summary>Initialise the signer.</summary>
/// <param name="forSigning">true if for signing, false if for verification.</param>
/// <param name="parameters">parameters for signature generation/verification. If the
/// parameters are for generation they should be a ParametersWithRandom,
/// a ParametersWithSalt, or just an RsaKeyParameters object. If RsaKeyParameters
/// are passed in a SecureRandom will be created.
/// </param>
/// <exception cref="ArgumentException">if wrong parameter type or a fixed
/// salt is passed in which is the wrong length.
/// </exception>
public virtual void Init(
bool forSigning,
ICipherParameters parameters)
{
RsaKeyParameters kParam;
if (parameters is ParametersWithRandom)
{
ParametersWithRandom p = (ParametersWithRandom) parameters;
kParam = (RsaKeyParameters) p.Parameters;
if (forSigning)
{
random = p.Random;
}
}
else if (parameters is ParametersWithSalt)
{
if (!forSigning)
throw new ArgumentException("ParametersWithSalt only valid for signing", "parameters");
ParametersWithSalt p = (ParametersWithSalt) parameters;
kParam = (RsaKeyParameters) p.Parameters;
standardSalt = p.GetSalt();
if (standardSalt.Length != saltLength)
throw new ArgumentException("Fixed salt is of wrong length");
}
else
{
kParam = (RsaKeyParameters) parameters;
if (forSigning)
{
random = new SecureRandom();
}
}
cipher.Init(forSigning, kParam);
keyBits = kParam.Modulus.BitLength;
block = new byte[(keyBits + 7) / 8];
if (trailer == TrailerImplicit)
{
mBuf = new byte[block.Length - digest.GetDigestSize() - saltLength - 1 - 1];
}
else
{
mBuf = new byte[block.Length - digest.GetDigestSize() - saltLength - 1 - 2];
}
Reset();
}
/// <summary> compare two byte arrays.</summary>
private bool IsSameAs(byte[] a, byte[] b)
{
if (messageLength != b.Length)
{
return false;
}
for (int i = 0; i != b.Length; i++)
{
if (a[i] != b[i])
{
return false;
}
}
return true;
}
/// <summary> clear possible sensitive data</summary>
private void ClearBlock(
byte[] block)
{
Array.Clear(block, 0, block.Length);
}
/// <summary> update the internal digest with the byte b</summary>
public virtual void Update(
byte input)
{
if (messageLength < mBuf.Length)
{
mBuf[messageLength++] = input;
}
else
{
digest.Update(input);
}
}
/// <summary> update the internal digest with the byte array in</summary>
public virtual void BlockUpdate(
byte[] input,
int inOff,
int length)
{
while (length > 0 && messageLength < mBuf.Length)
{
this.Update(input[inOff]);
inOff++;
length--;
}
if (length > 0)
{
digest.BlockUpdate(input, inOff, length);
}
}
/// <summary> reset the internal state</summary>
public virtual void Reset()
{
digest.Reset();
messageLength = 0;
if (mBuf != null)
{
ClearBlock(mBuf);
}
if (recoveredMessage != null)
{
ClearBlock(recoveredMessage);
recoveredMessage = null;
}
fullMessage = false;
}
/// <summary> Generate a signature for the loaded message using the key we were
/// initialised with.
/// </summary>
public byte[] GenerateSignature()
{
int digSize = digest.GetDigestSize();
byte[] m2Hash = new byte[digSize];
digest.DoFinal(m2Hash, 0);
byte[] C = new byte[8];
LtoOSP(messageLength * 8, C);
digest.BlockUpdate(C, 0, C.Length);
digest.BlockUpdate(mBuf, 0, messageLength);
digest.BlockUpdate(m2Hash, 0, m2Hash.Length);
byte[] salt;
if (standardSalt != null)
{
salt = standardSalt;
}
else
{
salt = new byte[saltLength];
random.NextBytes(salt);
}
digest.BlockUpdate(salt, 0, salt.Length);
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
int tLength = 2;
if (trailer == TrailerImplicit)
{
tLength = 1;
}
int off = block.Length - messageLength - salt.Length - hLen - tLength - 1;
block[off] = (byte) (0x01);
Array.Copy(mBuf, 0, block, off + 1, messageLength);
Array.Copy(salt, 0, block, off + 1 + messageLength, salt.Length);
byte[] dbMask = MaskGeneratorFunction1(hash, 0, hash.Length, block.Length - hLen - tLength);
for (int i = 0; i != dbMask.Length; i++)
{
block[i] ^= dbMask[i];
}
Array.Copy(hash, 0, block, block.Length - hLen - tLength, hLen);
if (trailer == TrailerImplicit)
{
block[block.Length - 1] = (byte)TrailerImplicit;
}
else
{
block[block.Length - 2] = (byte) ((uint)trailer >> 8);
block[block.Length - 1] = (byte) trailer;
}
block[0] &= (byte) (0x7f);
byte[] b = cipher.ProcessBlock(block, 0, block.Length);
ClearBlock(mBuf);
ClearBlock(block);
messageLength = 0;
return b;
}
/// <summary> return true if the signature represents a ISO9796-2 signature
/// for the passed in message.
/// </summary>
public virtual bool VerifySignature(
byte[] signature)
{
byte[] block = cipher.ProcessBlock(signature, 0, signature.Length);
//
// adjust block size for leading zeroes if necessary
//
int expectedSize = (keyBits + 7) / 8;
if (block.Length < expectedSize)
{
byte[] tmp = new byte[expectedSize];
block.CopyTo(tmp, tmp.Length - block.Length);
ClearBlock(block);
block = tmp;
}
int tLength;
if (((block[block.Length - 1] & 0xFF) ^ 0xBC) == 0)
{
tLength = 1;
}
else
{
int sigTrail = ((block[block.Length - 2] & 0xFF) << 8) | (block[block.Length - 1] & 0xFF);
switch (sigTrail)
{
case TrailerRipeMD160:
if (!(digest is RipeMD160Digest))
{
throw new ArgumentException("signer should be initialised with RipeMD160");
}
break;
case TrailerSha1:
if (!(digest is Sha1Digest))
{
throw new ArgumentException("signer should be initialised with SHA1");
}
break;
case TrailerRipeMD128:
if (!(digest is RipeMD128Digest))
{
throw new ArgumentException("signer should be initialised with RipeMD128");
}
break;
default:
throw new ArgumentException("unrecognised hash in signature");
}
tLength = 2;
}
//
// calculate H(m2)
//
byte[] m2Hash = new byte[hLen];
digest.DoFinal(m2Hash, 0);
//
// remove the mask
//
byte[] dbMask = MaskGeneratorFunction1(block, block.Length - hLen - tLength, hLen, block.Length - hLen - tLength);
for (int i = 0; i != dbMask.Length; i++)
{
block[i] ^= dbMask[i];
}
block[0] &= 0x7f;
//
// find out how much padding we've got
//
int mStart = 0;
while (mStart < block.Length)
{
if (block[mStart++] == 0x01)
break;
}
if (mStart >= block.Length)
{
ClearBlock(block);
return false;
}
fullMessage = (mStart > 1);
// TODO Should we check if a standardSalt was set and, if so, use its length instead?
recoveredMessage = new byte[dbMask.Length - mStart - saltLength];
Array.Copy(block, mStart, recoveredMessage, 0, recoveredMessage.Length);
//
// check the hashes
//
byte[] C = new byte[8];
LtoOSP(recoveredMessage.Length * 8, C);
digest.BlockUpdate(C, 0, C.Length);
if (recoveredMessage.Length != 0)
{
digest.BlockUpdate(recoveredMessage, 0, recoveredMessage.Length);
}
digest.BlockUpdate(m2Hash, 0, m2Hash.Length);
// Update for the salt
digest.BlockUpdate(block, mStart + recoveredMessage.Length, saltLength);
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
int off = block.Length - tLength - hash.Length;
for (int i = 0; i != hash.Length; i++)
{
if (hash[i] != block[off + i])
{
ClearBlock(block);
ClearBlock(hash);
ClearBlock(recoveredMessage);
fullMessage = false;
return false;
}
}
ClearBlock(block);
ClearBlock(hash);
//
// if they've input a message check what we've recovered against
// what was input.
//
if (messageLength != 0)
{
if (!IsSameAs(mBuf, recoveredMessage))
{
ClearBlock(mBuf);
return false;
}
messageLength = 0;
}
ClearBlock(mBuf);
return true;
}
/// <summary>
/// Return true if the full message was recoveredMessage.
/// </summary>
/// <returns>true on full message recovery, false otherwise, or if not sure.</returns>
/// <seealso cref="ISignerWithRecovery.HasFullMessage"/>
public virtual bool HasFullMessage()
{
return fullMessage;
}
/// <summary> int to octet string.</summary>
/// <summary> int to octet string.</summary>
private void ItoOSP(
int i,
byte[] sp)
{
sp[0] = (byte)((uint)i >> 24);
sp[1] = (byte)((uint)i >> 16);
sp[2] = (byte)((uint)i >> 8);
sp[3] = (byte)((uint)i >> 0);
}
/// <summary> long to octet string.</summary>
private void LtoOSP(long l, byte[] sp)
{
sp[0] = (byte)((ulong)l >> 56);
sp[1] = (byte)((ulong)l >> 48);
sp[2] = (byte)((ulong)l >> 40);
sp[3] = (byte)((ulong)l >> 32);
sp[4] = (byte)((ulong)l >> 24);
sp[5] = (byte)((ulong)l >> 16);
sp[6] = (byte)((ulong)l >> 8);
sp[7] = (byte)((ulong)l >> 0);
}
/// <summary> mask generator function, as described in Pkcs1v2.</summary>
private byte[] MaskGeneratorFunction1(
byte[] Z,
int zOff,
int zLen,
int length)
{
byte[] mask = new byte[length];
byte[] hashBuf = new byte[hLen];
byte[] C = new byte[4];
int counter = 0;
digest.Reset();
do
{
ItoOSP(counter, C);
digest.BlockUpdate(Z, zOff, zLen);
digest.BlockUpdate(C, 0, C.Length);
digest.DoFinal(hashBuf, 0);
Array.Copy(hashBuf, 0, mask, counter * hLen, hLen);
}
while (++counter < (length / hLen));
if ((counter * hLen) < length)
{
ItoOSP(counter, C);
digest.BlockUpdate(Z, zOff, zLen);
digest.BlockUpdate(C, 0, C.Length);
digest.DoFinal(hashBuf, 0);
Array.Copy(hashBuf, 0, mask, counter * hLen, mask.Length - (counter * hLen));
}
return mask;
}
}
}

View File

@@ -0,0 +1,451 @@
using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Parameters;
namespace Org.BouncyCastle.Crypto.Signers
{
/// <summary> ISO9796-2 - mechanism using a hash function with recovery (scheme 1)</summary>
public class Iso9796d2Signer : ISignerWithRecovery
{
/// <summary>
/// Return a reference to the recoveredMessage message.
/// </summary>
/// <returns>The full/partial recoveredMessage message.</returns>
/// <seealso cref="ISignerWithRecovery.GetRecoveredMessage"/>
public byte[] GetRecoveredMessage()
{
return recoveredMessage;
}
public const int TrailerImplicit = 0xBC;
public const int TrailerRipeMD160 = 0x31CC;
public const int TrailerRipeMD128 = 0x32CC;
public const int TrailerSha1 = 0x33CC;
private IDigest digest;
private IAsymmetricBlockCipher cipher;
private int trailer;
private int keyBits;
private byte[] block;
private byte[] mBuf;
private int messageLength;
private bool fullMessage;
private byte[] recoveredMessage;
/// <summary>
/// Generate a signer for the with either implicit or explicit trailers
/// for ISO9796-2.
/// </summary>
/// <param name="cipher">base cipher to use for signature creation/verification</param>
/// <param name="digest">digest to use.</param>
/// <param name="isImplicit">whether or not the trailer is implicit or gives the hash.</param>
public Iso9796d2Signer(
IAsymmetricBlockCipher cipher,
IDigest digest,
bool isImplicit)
{
this.cipher = cipher;
this.digest = digest;
if (isImplicit)
{
trailer = TrailerImplicit;
}
else
{
if (digest is Sha1Digest)
{
trailer = TrailerSha1;
}
else if (digest is RipeMD160Digest)
{
trailer = TrailerRipeMD160;
}
else if (digest is RipeMD128Digest)
{
trailer = TrailerRipeMD128;
}
else
{
throw new System.ArgumentException("no valid trailer for digest");
}
}
}
/// <summary> Constructor for a signer with an explicit digest trailer.
///
/// </summary>
/// <param name="cipher">cipher to use.
/// </param>
/// <param name="digest">digest to sign with.
/// </param>
public Iso9796d2Signer(IAsymmetricBlockCipher cipher, IDigest digest):this(cipher, digest, false)
{
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "with" + "ISO9796-2S1"; }
}
public virtual void Init(bool forSigning, ICipherParameters parameters)
{
RsaKeyParameters kParam = (RsaKeyParameters) parameters;
cipher.Init(forSigning, kParam);
keyBits = kParam.Modulus.BitLength;
block = new byte[(keyBits + 7) / 8];
if (trailer == TrailerImplicit)
{
mBuf = new byte[block.Length - digest.GetDigestSize() - 2];
}
else
{
mBuf = new byte[block.Length - digest.GetDigestSize() - 3];
}
Reset();
}
/// <summary> compare two byte arrays.</summary>
private bool IsSameAs(byte[] a, byte[] b)
{
if (messageLength > mBuf.Length)
{
if (mBuf.Length > b.Length)
{
return false;
}
for (int i = 0; i != mBuf.Length; i++)
{
if (a[i] != b[i])
{
return false;
}
}
}
else
{
if (messageLength != b.Length)
{
return false;
}
for (int i = 0; i != b.Length; i++)
{
if (a[i] != b[i])
{
return false;
}
}
}
return true;
}
/// <summary> clear possible sensitive data</summary>
private void ClearBlock(
byte[] block)
{
Array.Clear(block, 0, block.Length);
}
/// <summary> update the internal digest with the byte b</summary>
public void Update(
byte input)
{
digest.Update(input);
if (messageLength < mBuf.Length)
{
mBuf[messageLength] = input;
}
messageLength++;
}
/// <summary> update the internal digest with the byte array in</summary>
public void BlockUpdate(
byte[] input,
int inOff,
int length)
{
digest.BlockUpdate(input, inOff, length);
if (messageLength < mBuf.Length)
{
for (int i = 0; i < length && (i + messageLength) < mBuf.Length; i++)
{
mBuf[messageLength + i] = input[inOff + i];
}
}
messageLength += length;
}
/// <summary> reset the internal state</summary>
public virtual void Reset()
{
digest.Reset();
messageLength = 0;
ClearBlock(mBuf);
if (recoveredMessage != null)
{
ClearBlock(recoveredMessage);
}
recoveredMessage = null;
fullMessage = false;
}
/// <summary> Generate a signature for the loaded message using the key we were
/// initialised with.
/// </summary>
public virtual byte[] GenerateSignature()
{
int digSize = digest.GetDigestSize();
int t = 0;
int delta = 0;
if (trailer == TrailerImplicit)
{
t = 8;
delta = block.Length - digSize - 1;
digest.DoFinal(block, delta);
block[block.Length - 1] = (byte) TrailerImplicit;
}
else
{
t = 16;
delta = block.Length - digSize - 2;
digest.DoFinal(block, delta);
block[block.Length - 2] = (byte) ((uint)trailer >> 8);
block[block.Length - 1] = (byte) trailer;
}
byte header = 0;
int x = (digSize + messageLength) * 8 + t + 4 - keyBits;
if (x > 0)
{
int mR = messageLength - ((x + 7) / 8);
header = (byte) (0x60);
delta -= mR;
Array.Copy(mBuf, 0, block, delta, mR);
}
else
{
header = (byte) (0x40);
delta -= messageLength;
Array.Copy(mBuf, 0, block, delta, messageLength);
}
if ((delta - 1) > 0)
{
for (int i = delta - 1; i != 0; i--)
{
block[i] = (byte) 0xbb;
}
block[delta - 1] ^= (byte) 0x01;
block[0] = (byte) 0x0b;
block[0] |= header;
}
else
{
block[0] = (byte) 0x0a;
block[0] |= header;
}
byte[] b = cipher.ProcessBlock(block, 0, block.Length);
ClearBlock(mBuf);
ClearBlock(block);
return b;
}
/// <summary> return true if the signature represents a ISO9796-2 signature
/// for the passed in message.
/// </summary>
public virtual bool VerifySignature(byte[] signature)
{
byte[] block = cipher.ProcessBlock(signature, 0, signature.Length);
if (((block[0] & 0xC0) ^ 0x40) != 0)
{
ClearBlock(mBuf);
ClearBlock(block);
return false;
}
if (((block[block.Length - 1] & 0xF) ^ 0xC) != 0)
{
ClearBlock(mBuf);
ClearBlock(block);
return false;
}
int delta = 0;
if (((block[block.Length - 1] & 0xFF) ^ 0xBC) == 0)
{
delta = 1;
}
else
{
int sigTrail = ((block[block.Length - 2] & 0xFF) << 8) | (block[block.Length - 1] & 0xFF);
switch (sigTrail)
{
case TrailerRipeMD160:
if (!(digest is RipeMD160Digest))
{
throw new ArgumentException("signer should be initialised with RipeMD160");
}
break;
case TrailerSha1:
if (!(digest is Sha1Digest))
{
throw new ArgumentException("signer should be initialised with SHA1");
}
break;
case TrailerRipeMD128:
if (!(digest is RipeMD128Digest))
{
throw new ArgumentException("signer should be initialised with RipeMD128");
}
break;
default:
throw new ArgumentException("unrecognised hash in signature");
}
delta = 2;
}
//
// find out how much padding we've got
//
int mStart = 0;
for (; mStart != block.Length; mStart++)
{
if (((block[mStart] & 0x0f) ^ 0x0a) == 0)
{
break;
}
}
mStart++;
//
// check the hashes
//
byte[] hash = new byte[digest.GetDigestSize()];
int off = block.Length - delta - hash.Length;
//
// there must be at least one byte of message string
//
if ((off - mStart) <= 0)
{
ClearBlock(mBuf);
ClearBlock(block);
return false;
}
//
// if we contain the whole message as well, check the hash of that.
//
if ((block[0] & 0x20) == 0)
{
fullMessage = true;
digest.Reset();
digest.BlockUpdate(block, mStart, off - mStart);
digest.DoFinal(hash, 0);
for (int i = 0; i != hash.Length; i++)
{
block[off + i] ^= hash[i];
if (block[off + i] != 0)
{
ClearBlock(mBuf);
ClearBlock(block);
return false;
}
}
recoveredMessage = new byte[off - mStart];
Array.Copy(block, mStart, recoveredMessage, 0, recoveredMessage.Length);
}
else
{
fullMessage = false;
digest.DoFinal(hash, 0);
for (int i = 0; i != hash.Length; i++)
{
block[off + i] ^= hash[i];
if (block[off + i] != 0)
{
ClearBlock(mBuf);
ClearBlock(block);
return false;
}
}
recoveredMessage = new byte[off - mStart];
Array.Copy(block, mStart, recoveredMessage, 0, recoveredMessage.Length);
}
//
// if they've input a message check what we've recovered against
// what was input.
//
if (messageLength != 0)
{
if (!IsSameAs(mBuf, recoveredMessage))
{
ClearBlock(mBuf);
ClearBlock(block);
ClearBlock(recoveredMessage);
return false;
}
}
ClearBlock(mBuf);
ClearBlock(block);
return true;
}
/// <summary>
/// Return true if the full message was recoveredMessage.
/// </summary>
/// <returns> true on full message recovery, false otherwise.</returns>
/// <seealso cref="ISignerWithRecovery.HasFullMessage"/>
public virtual bool HasFullMessage()
{
return fullMessage;
}
}
}

View File

@@ -0,0 +1,299 @@
using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
/// <summary> RSA-PSS as described in Pkcs# 1 v 2.1.
/// <p>
/// Note: the usual value for the salt length is the number of
/// bytes in the hash function.</p>
/// </summary>
public class PssSigner
: ISigner
{
public const byte TrailerImplicit = (byte)0xBC;
private readonly IDigest digest;
private readonly IAsymmetricBlockCipher cipher;
private SecureRandom random;
private int hLen;
private int sLen;
private int emBits;
private byte[] salt;
private byte[] mDash;
private byte[] block;
private byte trailer;
public PssSigner(
IAsymmetricBlockCipher cipher,
IDigest digest)
: this(cipher, digest, digest.GetDigestSize())
{
}
/// <summary>Basic constructor</summary>
/// <param name="cipher">the asymmetric cipher to use.</param>
/// <param name="digest">the digest to use.</param>
/// <param name="saltLen">the length of the salt to use (in bytes).</param>
public PssSigner(
IAsymmetricBlockCipher cipher,
IDigest digest,
int saltLen)
: this(cipher, digest, saltLen, TrailerImplicit)
{
}
public PssSigner(
IAsymmetricBlockCipher cipher,
IDigest digest,
int saltLen,
byte trailer)
{
this.cipher = cipher;
this.digest = digest;
this.hLen = digest.GetDigestSize();
this.sLen = saltLen;
this.salt = new byte[saltLen];
this.mDash = new byte[8 + saltLen + hLen];
this.trailer = trailer;
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "withRSAandMGF1"; }
}
public virtual void Init(
bool forSigning,
ICipherParameters parameters)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom p = (ParametersWithRandom) parameters;
parameters = p.Parameters;
random = p.Random;
}
else
{
if (forSigning)
{
random = new SecureRandom();
}
}
cipher.Init(forSigning, parameters);
RsaKeyParameters kParam;
if (parameters is RsaBlindingParameters)
{
kParam = ((RsaBlindingParameters) parameters).PublicKey;
}
else
{
kParam = (RsaKeyParameters) parameters;
}
emBits = kParam.Modulus.BitLength - 1;
block = new byte[(emBits + 7) / 8];
}
/// <summary> clear possible sensitive data</summary>
private void ClearBlock(
byte[] block)
{
Array.Clear(block, 0, block.Length);
}
/// <summary> update the internal digest with the byte b</summary>
public virtual void Update(
byte input)
{
digest.Update(input);
}
/// <summary> update the internal digest with the byte array in</summary>
public virtual void BlockUpdate(
byte[] input,
int inOff,
int length)
{
digest.BlockUpdate(input, inOff, length);
}
/// <summary> reset the internal state</summary>
public virtual void Reset()
{
digest.Reset();
}
/// <summary> Generate a signature for the message we've been loaded with using
/// the key we were initialised with.
/// </summary>
public virtual byte[] GenerateSignature()
{
if (emBits < (8 * hLen + 8 * sLen + 9))
{
throw new DataLengthException("encoding error");
}
digest.DoFinal(mDash, mDash.Length - hLen - sLen);
if (sLen != 0)
{
random.NextBytes(salt);
salt.CopyTo(mDash, mDash.Length - sLen);
}
byte[] h = new byte[hLen];
digest.BlockUpdate(mDash, 0, mDash.Length);
digest.DoFinal(h, 0);
block[block.Length - sLen - 1 - hLen - 1] = (byte) (0x01);
salt.CopyTo(block, block.Length - sLen - hLen - 1);
byte[] dbMask = MaskGeneratorFunction1(h, 0, h.Length, block.Length - hLen - 1);
for (int i = 0; i != dbMask.Length; i++)
{
block[i] ^= dbMask[i];
}
block[0] &= (byte) ((0xff >> ((block.Length * 8) - emBits)));
h.CopyTo(block, block.Length - hLen - 1);
block[block.Length - 1] = trailer;
byte[] b = cipher.ProcessBlock(block, 0, block.Length);
ClearBlock(block);
return b;
}
/// <summary> return true if the internal state represents the signature described
/// in the passed in array.
/// </summary>
public virtual bool VerifySignature(
byte[] signature)
{
if (emBits < (8 * hLen + 8 * sLen + 9))
{
return false;
}
digest.DoFinal(mDash, mDash.Length - hLen - sLen);
byte[] b = cipher.ProcessBlock(signature, 0, signature.Length);
b.CopyTo(block, block.Length - b.Length);
if (block[block.Length - 1] != trailer)
{
ClearBlock(block);
return false;
}
byte[] dbMask = MaskGeneratorFunction1(block, block.Length - hLen - 1, hLen, block.Length - hLen - 1);
for (int i = 0; i != dbMask.Length; i++)
{
block[i] ^= dbMask[i];
}
block[0] &= (byte) ((0xff >> ((block.Length * 8) - emBits)));
for (int i = 0; i != block.Length - hLen - sLen - 2; i++)
{
if (block[i] != 0)
{
ClearBlock(block);
return false;
}
}
if (block[block.Length - hLen - sLen - 2] != 0x01)
{
ClearBlock(block);
return false;
}
Array.Copy(block, block.Length - sLen - hLen - 1, mDash, mDash.Length - sLen, sLen);
digest.BlockUpdate(mDash, 0, mDash.Length);
digest.DoFinal(mDash, mDash.Length - hLen);
for (int i = block.Length - hLen - 1, j = mDash.Length - hLen; j != mDash.Length; i++, j++)
{
if ((block[i] ^ mDash[j]) != 0)
{
ClearBlock(mDash);
ClearBlock(block);
return false;
}
}
ClearBlock(mDash);
ClearBlock(block);
return true;
}
/// <summary> int to octet string.</summary>
private void ItoOSP(
int i,
byte[] sp)
{
sp[0] = (byte)((uint) i >> 24);
sp[1] = (byte)((uint) i >> 16);
sp[2] = (byte)((uint) i >> 8);
sp[3] = (byte)((uint) i >> 0);
}
/// <summary> mask generator function, as described in Pkcs1v2.</summary>
private byte[] MaskGeneratorFunction1(
byte[] Z,
int zOff,
int zLen,
int length)
{
byte[] mask = new byte[length];
byte[] hashBuf = new byte[hLen];
byte[] C = new byte[4];
int counter = 0;
digest.Reset();
while (counter < (length / hLen))
{
ItoOSP(counter, C);
digest.BlockUpdate(Z, zOff, zLen);
digest.BlockUpdate(C, 0, C.Length);
digest.DoFinal(hashBuf, 0);
hashBuf.CopyTo(mask, counter * hLen);
++counter;
}
if ((counter * hLen) < length)
{
ItoOSP(counter, C);
digest.BlockUpdate(Z, zOff, zLen);
digest.BlockUpdate(C, 0, C.Length);
digest.DoFinal(hashBuf, 0);
Array.Copy(hashBuf, 0, mask, counter * hLen, mask.Length - (counter * hLen));
}
return mask;
}
}
}

View File

@@ -0,0 +1,213 @@
using System;
using System.Collections;
using System.IO;
using System.Text;
using Org.BouncyCastle.Asn1;
using Org.BouncyCastle.Asn1.Nist;
using Org.BouncyCastle.Asn1.Pkcs;
using Org.BouncyCastle.Asn1.TeleTrust;
using Org.BouncyCastle.Asn1.Utilities;
using Org.BouncyCastle.Asn1.X509;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Encodings;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Signers;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Signers
{
public class RsaDigestSigner
: ISigner
{
private readonly IAsymmetricBlockCipher rsaEngine = new Pkcs1Encoding(new RsaBlindedEngine());
private readonly AlgorithmIdentifier algId;
private readonly IDigest digest;
private bool forSigning;
private static readonly Hashtable oidMap = new Hashtable();
/// <summary>
/// Load oid table.
/// </summary>
static RsaDigestSigner()
{
oidMap["RIPEMD128"] = TeleTrusTObjectIdentifiers.RipeMD128;
oidMap["RIPEMD160"] = TeleTrusTObjectIdentifiers.RipeMD160;
oidMap["RIPEMD256"] = TeleTrusTObjectIdentifiers.RipeMD256;
oidMap["SHA-1"] = X509ObjectIdentifiers.IdSha1;
oidMap["SHA-224"] = NistObjectIdentifiers.IdSha224;
oidMap["SHA-256"] = NistObjectIdentifiers.IdSha256;
oidMap["SHA-384"] = NistObjectIdentifiers.IdSha384;
oidMap["SHA-512"] = NistObjectIdentifiers.IdSha512;
oidMap["MD2"] = PkcsObjectIdentifiers.MD2;
oidMap["MD4"] = PkcsObjectIdentifiers.MD4;
oidMap["MD5"] = PkcsObjectIdentifiers.MD5;
}
public RsaDigestSigner(
IDigest digest)
{
this.digest = digest;
algId = new AlgorithmIdentifier( (DerObjectIdentifier)oidMap[digest.AlgorithmName] , DerNull.Instance);
}
public string AlgorithmName
{
get { return digest.AlgorithmName + "withRSA"; }
}
/**
* Initialise the signer for signing or verification.
*
* @param forSigning true if for signing, false otherwise
* @param param necessary parameters.
*/
public void Init(
bool forSigning,
ICipherParameters parameters)
{
this.forSigning = forSigning;
AsymmetricKeyParameter k;
if (parameters is ParametersWithRandom)
{
k = (AsymmetricKeyParameter)((ParametersWithRandom)parameters).Parameters;
}
else
{
k = (AsymmetricKeyParameter)parameters;
}
if (forSigning && !k.IsPrivate)
throw new InvalidKeyException("Signing requires private key.");
if (!forSigning && k.IsPrivate)
throw new InvalidKeyException("Verification requires public key.");
Reset();
rsaEngine.Init(forSigning, parameters);
}
/**
* update the internal digest with the byte b
*/
public void Update(
byte input)
{
digest.Update(input);
}
/**
* update the internal digest with the byte array in
*/
public void BlockUpdate(
byte[] input,
int inOff,
int length)
{
digest.BlockUpdate(input, inOff, length);
}
/**
* Generate a signature for the message we've been loaded with using
* the key we were initialised with.
*/
public byte[] GenerateSignature()
{
if (!forSigning)
throw new InvalidOperationException("RsaDigestSigner not initialised for signature generation.");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
byte[] data = DerEncode(hash);
return rsaEngine.ProcessBlock(data, 0, data.Length);
}
/**
* return true if the internal state represents the signature described
* in the passed in array.
*/
public bool VerifySignature(
byte[] signature)
{
if (forSigning)
throw new InvalidOperationException("RsaDigestSigner not initialised for verification");
byte[] hash = new byte[digest.GetDigestSize()];
digest.DoFinal(hash, 0);
byte[] sig;
byte[] expected;
try
{
sig = rsaEngine.ProcessBlock(signature, 0, signature.Length);
expected = DerEncode(hash);
}
catch (Exception)
{
return false;
}
if (sig.Length == expected.Length)
{
for (int i = 0; i < sig.Length; i++)
{
if (sig[i] != expected[i])
{
return false;
}
}
}
else if (sig.Length == expected.Length - 2) // NULL left out
{
int sigOffset = sig.Length - hash.Length - 2;
int expectedOffset = expected.Length - hash.Length - 2;
expected[1] -= 2; // adjust lengths
expected[3] -= 2;
for (int i = 0; i < hash.Length; i++)
{
if (sig[sigOffset + i] != expected[expectedOffset + i]) // check hash
{
return false;
}
}
for (int i = 0; i < sigOffset; i++)
{
if (sig[i] != expected[i]) // check header less NULL
{
return false;
}
}
}
else
{
return false;
}
return true;
}
public void Reset()
{
digest.Reset();
}
private byte[] DerEncode(
byte[] hash)
{
DigestInfo dInfo = new DigestInfo(algId, hash);
return dInfo.GetDerEncoded();
}
}
}