Initial Commit
This commit is contained in:
156
iTechSharp/srcbc/crypto/engines/RSACoreEngine.cs
Normal file
156
iTechSharp/srcbc/crypto/engines/RSACoreEngine.cs
Normal file
@@ -0,0 +1,156 @@
|
||||
using System;
|
||||
|
||||
using Org.BouncyCastle.Crypto.Parameters;
|
||||
using Org.BouncyCastle.Math;
|
||||
using Org.BouncyCastle.Security;
|
||||
|
||||
namespace Org.BouncyCastle.Crypto.Engines
|
||||
{
|
||||
/**
|
||||
* this does your basic RSA algorithm.
|
||||
*/
|
||||
class RsaCoreEngine
|
||||
{
|
||||
private RsaKeyParameters key;
|
||||
private bool forEncryption;
|
||||
private int bitSize;
|
||||
|
||||
/**
|
||||
* initialise the RSA engine.
|
||||
*
|
||||
* @param forEncryption true if we are encrypting, false otherwise.
|
||||
* @param param the necessary RSA key parameters.
|
||||
*/
|
||||
public void Init(
|
||||
bool forEncryption,
|
||||
ICipherParameters parameters)
|
||||
{
|
||||
if (parameters is ParametersWithRandom)
|
||||
{
|
||||
parameters = ((ParametersWithRandom) parameters).Parameters;
|
||||
}
|
||||
|
||||
if (!(parameters is RsaKeyParameters))
|
||||
throw new InvalidKeyException("Not an RSA key");
|
||||
|
||||
this.key = (RsaKeyParameters) parameters;
|
||||
this.forEncryption = forEncryption;
|
||||
this.bitSize = key.Modulus.BitLength;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum size for an input block to this engine.
|
||||
* For RSA this is always one byte less than the key size on
|
||||
* encryption, and the same length as the key size on decryption.
|
||||
*
|
||||
* @return maximum size for an input block.
|
||||
*/
|
||||
public int GetInputBlockSize()
|
||||
{
|
||||
if (forEncryption)
|
||||
{
|
||||
return (bitSize - 1) / 8;
|
||||
}
|
||||
|
||||
return (bitSize + 7) / 8;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum size for an output block to this engine.
|
||||
* For RSA this is always one byte less than the key size on
|
||||
* decryption, and the same length as the key size on encryption.
|
||||
*
|
||||
* @return maximum size for an output block.
|
||||
*/
|
||||
public int GetOutputBlockSize()
|
||||
{
|
||||
if (forEncryption)
|
||||
{
|
||||
return (bitSize + 7) / 8;
|
||||
}
|
||||
|
||||
return (bitSize - 1) / 8;
|
||||
}
|
||||
|
||||
public BigInteger ConvertInput(
|
||||
byte[] inBuf,
|
||||
int inOff,
|
||||
int inLen)
|
||||
{
|
||||
int maxLength = (bitSize + 7) / 8;
|
||||
|
||||
if (inLen > maxLength)
|
||||
throw new DataLengthException("input too large for RSA cipher.");
|
||||
|
||||
BigInteger input = new BigInteger(1, inBuf, inOff, inLen);
|
||||
|
||||
if (input.CompareTo(key.Modulus) >= 0)
|
||||
throw new DataLengthException("input too large for RSA cipher.");
|
||||
|
||||
return input;
|
||||
}
|
||||
|
||||
public byte[] ConvertOutput(
|
||||
BigInteger result)
|
||||
{
|
||||
byte[] output = result.ToByteArrayUnsigned();
|
||||
|
||||
if (forEncryption)
|
||||
{
|
||||
int outSize = GetOutputBlockSize();
|
||||
|
||||
// TODO To avoid this, create version of BigInteger.ToByteArray that
|
||||
// writes to an existing array
|
||||
if (output.Length < outSize) // have ended up with less bytes than normal, lengthen
|
||||
{
|
||||
byte[] tmp = new byte[outSize];
|
||||
output.CopyTo(tmp, tmp.Length - output.Length);
|
||||
output = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
public BigInteger ProcessBlock(
|
||||
BigInteger input)
|
||||
{
|
||||
if (key is RsaPrivateCrtKeyParameters)
|
||||
{
|
||||
//
|
||||
// we have the extra factors, use the Chinese Remainder Theorem - the author
|
||||
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
|
||||
// advice regarding the expression of this.
|
||||
//
|
||||
RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;
|
||||
|
||||
BigInteger p = crtKey.P;;
|
||||
BigInteger q = crtKey.Q;
|
||||
BigInteger dP = crtKey.DP;
|
||||
BigInteger dQ = crtKey.DQ;
|
||||
BigInteger qInv = crtKey.QInv;
|
||||
|
||||
BigInteger mP, mQ, h, m;
|
||||
|
||||
// mP = ((input Mod p) ^ dP)) Mod p
|
||||
mP = (input.Remainder(p)).ModPow(dP, p);
|
||||
|
||||
// mQ = ((input Mod q) ^ dQ)) Mod q
|
||||
mQ = (input.Remainder(q)).ModPow(dQ, q);
|
||||
|
||||
// h = qInv * (mP - mQ) Mod p
|
||||
h = mP.Subtract(mQ);
|
||||
h = h.Multiply(qInv);
|
||||
h = h.Mod(p); // Mod (in Java) returns the positive residual
|
||||
|
||||
// m = h * q + mQ
|
||||
m = h.Multiply(q);
|
||||
m = m.Add(mQ);
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
return input.ModPow(key.Exponent, key.Modulus);
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user