Initial Commit
This commit is contained in:
362
iTechSharp/srcbc/crypto/engines/RC6Engine.cs
Normal file
362
iTechSharp/srcbc/crypto/engines/RC6Engine.cs
Normal file
@@ -0,0 +1,362 @@
|
||||
using System;
|
||||
|
||||
using Org.BouncyCastle.Crypto.Parameters;
|
||||
|
||||
namespace Org.BouncyCastle.Crypto.Engines
|
||||
{
|
||||
/**
|
||||
* An RC6 engine.
|
||||
*/
|
||||
public class RC6Engine
|
||||
: IBlockCipher
|
||||
{
|
||||
private static readonly int wordSize = 32;
|
||||
private static readonly int bytesPerWord = wordSize / 8;
|
||||
|
||||
/*
|
||||
* the number of rounds to perform
|
||||
*/
|
||||
private static readonly int _noRounds = 20;
|
||||
|
||||
/*
|
||||
* the expanded key array of size 2*(rounds + 1)
|
||||
*/
|
||||
private int [] _S;
|
||||
|
||||
/*
|
||||
* our "magic constants" for wordSize 32
|
||||
*
|
||||
* Pw = Odd((e-2) * 2^wordsize)
|
||||
* Qw = Odd((o-2) * 2^wordsize)
|
||||
*
|
||||
* where e is the base of natural logarithms (2.718281828...)
|
||||
* and o is the golden ratio (1.61803398...)
|
||||
*/
|
||||
private static readonly int P32 = unchecked((int) 0xb7e15163);
|
||||
private static readonly int Q32 = unchecked((int) 0x9e3779b9);
|
||||
|
||||
private static readonly int LGW = 5; // log2(32)
|
||||
|
||||
private bool forEncryption;
|
||||
|
||||
/**
|
||||
* Create an instance of the RC6 encryption algorithm
|
||||
* and set some defaults
|
||||
*/
|
||||
public RC6Engine()
|
||||
{
|
||||
// _S = null;
|
||||
}
|
||||
|
||||
public string AlgorithmName
|
||||
{
|
||||
get { return "RC6"; }
|
||||
}
|
||||
|
||||
public bool IsPartialBlockOkay
|
||||
{
|
||||
get { return false; }
|
||||
}
|
||||
|
||||
public int GetBlockSize()
|
||||
{
|
||||
return 4 * bytesPerWord;
|
||||
}
|
||||
|
||||
/**
|
||||
* initialise a RC5-32 cipher.
|
||||
*
|
||||
* @param forEncryption whether or not we are for encryption.
|
||||
* @param parameters the parameters required to set up the cipher.
|
||||
* @exception ArgumentException if the parameters argument is
|
||||
* inappropriate.
|
||||
*/
|
||||
public void Init(
|
||||
bool forEncryption,
|
||||
ICipherParameters parameters)
|
||||
{
|
||||
if (!(parameters is KeyParameter))
|
||||
throw new ArgumentException("invalid parameter passed to RC6 init - " + parameters.GetType().ToString());
|
||||
|
||||
this.forEncryption = forEncryption;
|
||||
|
||||
KeyParameter p = (KeyParameter)parameters;
|
||||
SetKey(p.GetKey());
|
||||
}
|
||||
|
||||
public int ProcessBlock(
|
||||
byte[] input,
|
||||
int inOff,
|
||||
byte[] output,
|
||||
int outOff)
|
||||
{
|
||||
int blockSize = GetBlockSize();
|
||||
if (_S == null)
|
||||
throw new InvalidOperationException("RC6 engine not initialised");
|
||||
if ((inOff + blockSize) > input.Length)
|
||||
throw new DataLengthException("input buffer too short");
|
||||
if ((outOff + blockSize) > output.Length)
|
||||
throw new DataLengthException("output buffer too short");
|
||||
|
||||
return (forEncryption)
|
||||
? EncryptBlock(input, inOff, output, outOff)
|
||||
: DecryptBlock(input, inOff, output, outOff);
|
||||
}
|
||||
|
||||
public void Reset()
|
||||
{
|
||||
}
|
||||
|
||||
/**
|
||||
* Re-key the cipher.
|
||||
*
|
||||
* @param inKey the key to be used
|
||||
*/
|
||||
private void SetKey(
|
||||
byte[] key)
|
||||
{
|
||||
//
|
||||
// KEY EXPANSION:
|
||||
//
|
||||
// There are 3 phases to the key expansion.
|
||||
//
|
||||
// Phase 1:
|
||||
// Copy the secret key K[0...b-1] into an array L[0..c-1] of
|
||||
// c = ceil(b/u), where u = wordSize/8 in little-endian order.
|
||||
// In other words, we fill up L using u consecutive key bytes
|
||||
// of K. Any unfilled byte positions in L are zeroed. In the
|
||||
// case that b = c = 0, set c = 1 and L[0] = 0.
|
||||
//
|
||||
// compute number of dwords
|
||||
int c = (key.Length + (bytesPerWord - 1)) / bytesPerWord;
|
||||
if (c == 0)
|
||||
{
|
||||
c = 1;
|
||||
}
|
||||
int[] L = new int[(key.Length + bytesPerWord - 1) / bytesPerWord];
|
||||
|
||||
// load all key bytes into array of key dwords
|
||||
for (int i = key.Length - 1; i >= 0; i--)
|
||||
{
|
||||
L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
|
||||
}
|
||||
|
||||
//
|
||||
// Phase 2:
|
||||
// Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
|
||||
// Initialize S to a particular fixed pseudo-random bit pattern
|
||||
// using an arithmetic progression modulo 2^wordsize determined
|
||||
// by the magic numbers, Pw & Qw.
|
||||
//
|
||||
_S = new int[2+2*_noRounds+2];
|
||||
|
||||
_S[0] = P32;
|
||||
for (int i=1; i < _S.Length; i++)
|
||||
{
|
||||
_S[i] = (_S[i-1] + Q32);
|
||||
}
|
||||
|
||||
//
|
||||
// Phase 3:
|
||||
// Mix in the user's secret key in 3 passes over the arrays S & L.
|
||||
// The max of the arrays sizes is used as the loop control
|
||||
//
|
||||
int iter;
|
||||
|
||||
if (L.Length > _S.Length)
|
||||
{
|
||||
iter = 3 * L.Length;
|
||||
}
|
||||
else
|
||||
{
|
||||
iter = 3 * _S.Length;
|
||||
}
|
||||
|
||||
int A = 0;
|
||||
int B = 0;
|
||||
int ii = 0, jj = 0;
|
||||
|
||||
for (int k = 0; k < iter; k++)
|
||||
{
|
||||
A = _S[ii] = RotateLeft(_S[ii] + A + B, 3);
|
||||
B = L[jj] = RotateLeft( L[jj] + A + B, A+B);
|
||||
ii = (ii+1) % _S.Length;
|
||||
jj = (jj+1) % L.Length;
|
||||
}
|
||||
}
|
||||
|
||||
private int EncryptBlock(
|
||||
byte[] input,
|
||||
int inOff,
|
||||
byte[] outBytes,
|
||||
int outOff)
|
||||
{
|
||||
// load A,B,C and D registers from in.
|
||||
int A = BytesToWord(input, inOff);
|
||||
int B = BytesToWord(input, inOff + bytesPerWord);
|
||||
int C = BytesToWord(input, inOff + bytesPerWord*2);
|
||||
int D = BytesToWord(input, inOff + bytesPerWord*3);
|
||||
|
||||
// Do pseudo-round #0: pre-whitening of B and D
|
||||
B += _S[0];
|
||||
D += _S[1];
|
||||
|
||||
// perform round #1,#2 ... #ROUNDS of encryption
|
||||
for (int i = 1; i <= _noRounds; i++)
|
||||
{
|
||||
int t = 0,u = 0;
|
||||
|
||||
t = B*(2*B+1);
|
||||
t = RotateLeft(t,5);
|
||||
|
||||
u = D*(2*D+1);
|
||||
u = RotateLeft(u,5);
|
||||
|
||||
A ^= t;
|
||||
A = RotateLeft(A,u);
|
||||
A += _S[2*i];
|
||||
|
||||
C ^= u;
|
||||
C = RotateLeft(C,t);
|
||||
C += _S[2*i+1];
|
||||
|
||||
int temp = A;
|
||||
A = B;
|
||||
B = C;
|
||||
C = D;
|
||||
D = temp;
|
||||
}
|
||||
// do pseudo-round #(ROUNDS+1) : post-whitening of A and C
|
||||
A += _S[2*_noRounds+2];
|
||||
C += _S[2*_noRounds+3];
|
||||
|
||||
// store A, B, C and D registers to out
|
||||
WordToBytes(A, outBytes, outOff);
|
||||
WordToBytes(B, outBytes, outOff + bytesPerWord);
|
||||
WordToBytes(C, outBytes, outOff + bytesPerWord*2);
|
||||
WordToBytes(D, outBytes, outOff + bytesPerWord*3);
|
||||
|
||||
return 4 * bytesPerWord;
|
||||
}
|
||||
|
||||
private int DecryptBlock(
|
||||
byte[] input,
|
||||
int inOff,
|
||||
byte[] outBytes,
|
||||
int outOff)
|
||||
{
|
||||
// load A,B,C and D registers from out.
|
||||
int A = BytesToWord(input, inOff);
|
||||
int B = BytesToWord(input, inOff + bytesPerWord);
|
||||
int C = BytesToWord(input, inOff + bytesPerWord*2);
|
||||
int D = BytesToWord(input, inOff + bytesPerWord*3);
|
||||
|
||||
// Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
|
||||
C -= _S[2*_noRounds+3];
|
||||
A -= _S[2*_noRounds+2];
|
||||
|
||||
// Undo round #ROUNDS, .., #2,#1 of encryption
|
||||
for (int i = _noRounds; i >= 1; i--)
|
||||
{
|
||||
int t=0,u = 0;
|
||||
|
||||
int temp = D;
|
||||
D = C;
|
||||
C = B;
|
||||
B = A;
|
||||
A = temp;
|
||||
|
||||
t = B*(2*B+1);
|
||||
t = RotateLeft(t, LGW);
|
||||
|
||||
u = D*(2*D+1);
|
||||
u = RotateLeft(u, LGW);
|
||||
|
||||
C -= _S[2*i+1];
|
||||
C = RotateRight(C,t);
|
||||
C ^= u;
|
||||
|
||||
A -= _S[2*i];
|
||||
A = RotateRight(A,u);
|
||||
A ^= t;
|
||||
|
||||
}
|
||||
// Undo pseudo-round #0: pre-whitening of B and D
|
||||
D -= _S[1];
|
||||
B -= _S[0];
|
||||
|
||||
WordToBytes(A, outBytes, outOff);
|
||||
WordToBytes(B, outBytes, outOff + bytesPerWord);
|
||||
WordToBytes(C, outBytes, outOff + bytesPerWord*2);
|
||||
WordToBytes(D, outBytes, outOff + bytesPerWord*3);
|
||||
|
||||
return 4 * bytesPerWord;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
//
|
||||
// PRIVATE Helper Methods
|
||||
//
|
||||
//////////////////////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Perform a left "spin" of the word. The rotation of the given
|
||||
* word <em>x</em> is rotated left by <em>y</em> bits.
|
||||
* Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
|
||||
* are used to determine the rotation amount. Here it is
|
||||
* assumed that the wordsize used is a power of 2.
|
||||
*
|
||||
* @param x word to rotate
|
||||
* @param y number of bits to rotate % wordSize
|
||||
*/
|
||||
private int RotateLeft(int x, int y)
|
||||
{
|
||||
return ((int)((uint)(x << (y & (wordSize-1)))
|
||||
| ((uint) x >> (wordSize - (y & (wordSize-1))))));
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform a right "spin" of the word. The rotation of the given
|
||||
* word <em>x</em> is rotated left by <em>y</em> bits.
|
||||
* Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
|
||||
* are used to determine the rotation amount. Here it is
|
||||
* assumed that the wordsize used is a power of 2.
|
||||
*
|
||||
* @param x word to rotate
|
||||
* @param y number of bits to rotate % wordSize
|
||||
*/
|
||||
private int RotateRight(int x, int y)
|
||||
{
|
||||
return ((int)(((uint) x >> (y & (wordSize-1)))
|
||||
| (uint)(x << (wordSize - (y & (wordSize-1))))));
|
||||
}
|
||||
|
||||
private int BytesToWord(
|
||||
byte[] src,
|
||||
int srcOff)
|
||||
{
|
||||
int word = 0;
|
||||
|
||||
for (int i = bytesPerWord - 1; i >= 0; i--)
|
||||
{
|
||||
word = (word << 8) + (src[i + srcOff] & 0xff);
|
||||
}
|
||||
|
||||
return word;
|
||||
}
|
||||
|
||||
private void WordToBytes(
|
||||
int word,
|
||||
byte[] dst,
|
||||
int dstOff)
|
||||
{
|
||||
for (int i = 0; i < bytesPerWord; i++)
|
||||
{
|
||||
dst[i + dstOff] = (byte)word;
|
||||
word = (int) ((uint) word >> 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user