Initial Commit
This commit is contained in:
432
iTechSharp/srcbc/crypto/engines/NaccacheSternEngine.cs
Normal file
432
iTechSharp/srcbc/crypto/engines/NaccacheSternEngine.cs
Normal file
@@ -0,0 +1,432 @@
|
||||
using System;
|
||||
using System.Collections;
|
||||
|
||||
using Org.BouncyCastle.Crypto.Parameters;
|
||||
using Org.BouncyCastle.Math;
|
||||
using Org.BouncyCastle.Utilities;
|
||||
|
||||
namespace Org.BouncyCastle.Crypto.Engines
|
||||
{
|
||||
/**
|
||||
* NaccacheStern Engine. For details on this cipher, please see
|
||||
* http://www.gemplus.com/smart/rd/publications/pdf/NS98pkcs.pdf
|
||||
*/
|
||||
public class NaccacheSternEngine
|
||||
: IAsymmetricBlockCipher
|
||||
{
|
||||
private bool forEncryption;
|
||||
|
||||
private NaccacheSternKeyParameters key;
|
||||
|
||||
private ArrayList[] lookup = null;
|
||||
|
||||
private bool debug = false;
|
||||
|
||||
public string AlgorithmName
|
||||
{
|
||||
get { return "NaccacheStern"; }
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes this algorithm. Must be called before all other Functions.
|
||||
*
|
||||
* @see org.bouncycastle.crypto.AsymmetricBlockCipher#init(bool,
|
||||
* org.bouncycastle.crypto.CipherParameters)
|
||||
*/
|
||||
public void Init(
|
||||
bool forEncryption,
|
||||
ICipherParameters parameters)
|
||||
{
|
||||
this.forEncryption = forEncryption;
|
||||
|
||||
if (parameters is ParametersWithRandom)
|
||||
{
|
||||
parameters = ((ParametersWithRandom) parameters).Parameters;
|
||||
}
|
||||
|
||||
key = (NaccacheSternKeyParameters)parameters;
|
||||
|
||||
// construct lookup table for faster decryption if necessary
|
||||
if (!this.forEncryption)
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Constructing lookup Array");
|
||||
}
|
||||
NaccacheSternPrivateKeyParameters priv = (NaccacheSternPrivateKeyParameters)key;
|
||||
ArrayList primes = priv.SmallPrimes;
|
||||
lookup = new ArrayList[primes.Count];
|
||||
for (int i = 0; i < primes.Count; i++)
|
||||
{
|
||||
BigInteger actualPrime = (BigInteger) primes[i];
|
||||
int actualPrimeValue = actualPrime.IntValue;
|
||||
|
||||
lookup[i] = new ArrayList(actualPrimeValue);
|
||||
lookup[i].Add(BigInteger.One);
|
||||
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Constructing lookup ArrayList for " + actualPrimeValue);
|
||||
}
|
||||
|
||||
BigInteger accJ = BigInteger.Zero;
|
||||
|
||||
for (int j = 1; j < actualPrimeValue; j++)
|
||||
{
|
||||
// BigInteger bigJ = BigInteger.ValueOf(j);
|
||||
// accJ = priv.PhiN.Multiply(bigJ);
|
||||
accJ = accJ.Add(priv.PhiN);
|
||||
BigInteger comp = accJ.Divide(actualPrime);
|
||||
lookup[i].Add(priv.G.ModPow(comp, priv.Modulus));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public bool Debug
|
||||
{
|
||||
set { this.debug = value; }
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the input block size of this algorithm.
|
||||
*
|
||||
* @see org.bouncycastle.crypto.AsymmetricBlockCipher#GetInputBlockSize()
|
||||
*/
|
||||
public int GetInputBlockSize()
|
||||
{
|
||||
if (forEncryption)
|
||||
{
|
||||
// We can only encrypt values up to lowerSigmaBound
|
||||
return (key.LowerSigmaBound + 7) / 8 - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// We pad to modulus-size bytes for easier decryption.
|
||||
// return key.Modulus.ToByteArray().Length;
|
||||
return key.Modulus.BitLength / 8 + 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the output block size of this algorithm.
|
||||
*
|
||||
* @see org.bouncycastle.crypto.AsymmetricBlockCipher#GetOutputBlockSize()
|
||||
*/
|
||||
public int GetOutputBlockSize()
|
||||
{
|
||||
if (forEncryption)
|
||||
{
|
||||
// encrypted Data is always padded up to modulus size
|
||||
// return key.Modulus.ToByteArray().Length;
|
||||
return key.Modulus.BitLength / 8 + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// decrypted Data has upper limit lowerSigmaBound
|
||||
return (key.LowerSigmaBound + 7) / 8 - 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process a single Block using the Naccache-Stern algorithm.
|
||||
*
|
||||
* @see org.bouncycastle.crypto.AsymmetricBlockCipher#ProcessBlock(byte[],
|
||||
* int, int)
|
||||
*/
|
||||
public byte[] ProcessBlock(
|
||||
byte[] inBytes,
|
||||
int inOff,
|
||||
int length)
|
||||
{
|
||||
if (key == null)
|
||||
throw new InvalidOperationException("NaccacheStern engine not initialised");
|
||||
if (length > (GetInputBlockSize() + 1))
|
||||
throw new DataLengthException("input too large for Naccache-Stern cipher.\n");
|
||||
|
||||
if (!forEncryption)
|
||||
{
|
||||
// At decryption make sure that we receive padded data blocks
|
||||
if (length < GetInputBlockSize())
|
||||
{
|
||||
throw new InvalidCipherTextException("BlockLength does not match modulus for Naccache-Stern cipher.\n");
|
||||
}
|
||||
}
|
||||
|
||||
// transform input into BigInteger
|
||||
BigInteger input = new BigInteger(1, inBytes, inOff, length);
|
||||
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("input as BigInteger: " + input);
|
||||
}
|
||||
|
||||
byte[] output;
|
||||
if (forEncryption)
|
||||
{
|
||||
output = Encrypt(input);
|
||||
}
|
||||
else
|
||||
{
|
||||
ArrayList plain = new ArrayList();
|
||||
NaccacheSternPrivateKeyParameters priv = (NaccacheSternPrivateKeyParameters)key;
|
||||
ArrayList primes = priv.SmallPrimes;
|
||||
// Get Chinese Remainders of CipherText
|
||||
for (int i = 0; i < primes.Count; i++)
|
||||
{
|
||||
BigInteger exp = input.ModPow(priv.PhiN.Divide((BigInteger)primes[i]), priv.Modulus);
|
||||
ArrayList al = lookup[i];
|
||||
if (lookup[i].Count != ((BigInteger)primes[i]).IntValue)
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Prime is " + primes[i] + ", lookup table has size " + al.Count);
|
||||
}
|
||||
throw new InvalidCipherTextException("Error in lookup Array for "
|
||||
+ ((BigInteger)primes[i]).IntValue
|
||||
+ ": Size mismatch. Expected ArrayList with length "
|
||||
+ ((BigInteger)primes[i]).IntValue + " but found ArrayList of length "
|
||||
+ lookup[i].Count);
|
||||
}
|
||||
int lookedup = al.IndexOf(exp);
|
||||
|
||||
if (lookedup == -1)
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Actual prime is " + primes[i]);
|
||||
Console.WriteLine("Decrypted value is " + exp);
|
||||
|
||||
Console.WriteLine("LookupList for " + primes[i] + " with size " + lookup[i].Count
|
||||
+ " is: ");
|
||||
for (int j = 0; j < lookup[i].Count; j++)
|
||||
{
|
||||
Console.WriteLine(lookup[i][j]);
|
||||
}
|
||||
}
|
||||
throw new InvalidCipherTextException("Lookup failed");
|
||||
}
|
||||
plain.Add(BigInteger.ValueOf(lookedup));
|
||||
}
|
||||
BigInteger test = chineseRemainder(plain, primes);
|
||||
|
||||
// Should not be used as an oracle, so reencrypt output to see
|
||||
// if it corresponds to input
|
||||
|
||||
// this breaks probabilisic encryption, so disable it. Anyway, we do
|
||||
// use the first n primes for key generation, so it is pretty easy
|
||||
// to guess them. But as stated in the paper, this is not a security
|
||||
// breach. So we can just work with the correct sigma.
|
||||
|
||||
// if (debug) {
|
||||
// Console.WriteLine("Decryption is " + test);
|
||||
// }
|
||||
// if ((key.G.ModPow(test, key.Modulus)).Equals(input)) {
|
||||
// output = test.ToByteArray();
|
||||
// } else {
|
||||
// if(debug){
|
||||
// Console.WriteLine("Engine seems to be used as an oracle,
|
||||
// returning null");
|
||||
// }
|
||||
// output = null;
|
||||
// }
|
||||
|
||||
output = test.ToByteArray();
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypts a BigInteger aka Plaintext with the public key.
|
||||
*
|
||||
* @param plain
|
||||
* The BigInteger to encrypt
|
||||
* @return The byte[] representation of the encrypted BigInteger (i.e.
|
||||
* crypted.toByteArray())
|
||||
*/
|
||||
public byte[] Encrypt(
|
||||
BigInteger plain)
|
||||
{
|
||||
// Always return modulus size values 0-padded at the beginning
|
||||
// 0-padding at the beginning is correctly parsed by BigInteger :)
|
||||
// byte[] output = key.Modulus.ToByteArray();
|
||||
// Array.Clear(output, 0, output.Length);
|
||||
byte[] output = new byte[key.Modulus.BitLength / 8 + 1];
|
||||
|
||||
byte[] tmp = key.G.ModPow(plain, key.Modulus).ToByteArray();
|
||||
Array.Copy(tmp, 0, output, output.Length - tmp.Length, tmp.Length);
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Encrypted value is: " + new BigInteger(output));
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds the contents of two encrypted blocks mod sigma
|
||||
*
|
||||
* @param block1
|
||||
* the first encrypted block
|
||||
* @param block2
|
||||
* the second encrypted block
|
||||
* @return encrypt((block1 + block2) mod sigma)
|
||||
* @throws InvalidCipherTextException
|
||||
*/
|
||||
public byte[] AddCryptedBlocks(
|
||||
byte[] block1,
|
||||
byte[] block2)
|
||||
{
|
||||
// check for correct blocksize
|
||||
if (forEncryption)
|
||||
{
|
||||
if ((block1.Length > GetOutputBlockSize())
|
||||
|| (block2.Length > GetOutputBlockSize()))
|
||||
{
|
||||
throw new InvalidCipherTextException(
|
||||
"BlockLength too large for simple addition.\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((block1.Length > GetInputBlockSize())
|
||||
|| (block2.Length > GetInputBlockSize()))
|
||||
{
|
||||
throw new InvalidCipherTextException(
|
||||
"BlockLength too large for simple addition.\n");
|
||||
}
|
||||
}
|
||||
|
||||
// calculate resulting block
|
||||
BigInteger m1Crypt = new BigInteger(1, block1);
|
||||
BigInteger m2Crypt = new BigInteger(1, block2);
|
||||
BigInteger m1m2Crypt = m1Crypt.Multiply(m2Crypt);
|
||||
m1m2Crypt = m1m2Crypt.Mod(key.Modulus);
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("c(m1) as BigInteger:....... " + m1Crypt);
|
||||
Console.WriteLine("c(m2) as BigInteger:....... " + m2Crypt);
|
||||
Console.WriteLine("c(m1)*c(m2)%n = c(m1+m2)%n: " + m1m2Crypt);
|
||||
}
|
||||
|
||||
//byte[] output = key.Modulus.ToByteArray();
|
||||
//Array.Clear(output, 0, output.Length);
|
||||
byte[] output = new byte[key.Modulus.BitLength / 8 + 1];
|
||||
|
||||
byte[] m1m2CryptBytes = m1m2Crypt.ToByteArray();
|
||||
Array.Copy(m1m2CryptBytes, 0, output,
|
||||
output.Length - m1m2CryptBytes.Length, m1m2CryptBytes.Length);
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convenience Method for data exchange with the cipher.
|
||||
*
|
||||
* Determines blocksize and splits data to blocksize.
|
||||
*
|
||||
* @param data the data to be processed
|
||||
* @return the data after it went through the NaccacheSternEngine.
|
||||
* @throws InvalidCipherTextException
|
||||
*/
|
||||
public byte[] ProcessData(
|
||||
byte[] data)
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine();
|
||||
}
|
||||
if (data.Length > GetInputBlockSize())
|
||||
{
|
||||
int inBlocksize = GetInputBlockSize();
|
||||
int outBlocksize = GetOutputBlockSize();
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("Input blocksize is: " + inBlocksize + " bytes");
|
||||
Console.WriteLine("Output blocksize is: " + outBlocksize + " bytes");
|
||||
Console.WriteLine("Data has length:.... " + data.Length + " bytes");
|
||||
}
|
||||
int datapos = 0;
|
||||
int retpos = 0;
|
||||
byte[] retval = new byte[(data.Length / inBlocksize + 1) * outBlocksize];
|
||||
while (datapos < data.Length)
|
||||
{
|
||||
byte[] tmp;
|
||||
if (datapos + inBlocksize < data.Length)
|
||||
{
|
||||
tmp = ProcessBlock(data, datapos, inBlocksize);
|
||||
datapos += inBlocksize;
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp = ProcessBlock(data, datapos, data.Length - datapos);
|
||||
datapos += data.Length - datapos;
|
||||
}
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("new datapos is " + datapos);
|
||||
}
|
||||
if (tmp != null)
|
||||
{
|
||||
tmp.CopyTo(retval, retpos);
|
||||
retpos += tmp.Length;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("cipher returned null");
|
||||
}
|
||||
throw new InvalidCipherTextException("cipher returned null");
|
||||
}
|
||||
}
|
||||
byte[] ret = new byte[retpos];
|
||||
Array.Copy(retval, 0, ret, 0, retpos);
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("returning " + ret.Length + " bytes");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (debug)
|
||||
{
|
||||
Console.WriteLine("data size is less then input block size, processing directly");
|
||||
}
|
||||
return ProcessBlock(data, 0, data.Length);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the integer x that is expressed through the given primes and the
|
||||
* congruences with the chinese remainder theorem (CRT).
|
||||
*
|
||||
* @param congruences
|
||||
* the congruences c_i
|
||||
* @param primes
|
||||
* the primes p_i
|
||||
* @return an integer x for that x % p_i == c_i
|
||||
*/
|
||||
private static BigInteger chineseRemainder(ArrayList congruences, ArrayList primes)
|
||||
{
|
||||
BigInteger retval = BigInteger.Zero;
|
||||
BigInteger all = BigInteger.One;
|
||||
for (int i = 0; i < primes.Count; i++)
|
||||
{
|
||||
all = all.Multiply((BigInteger)primes[i]);
|
||||
}
|
||||
for (int i = 0; i < primes.Count; i++)
|
||||
{
|
||||
BigInteger a = (BigInteger)primes[i];
|
||||
BigInteger b = all.Divide(a);
|
||||
BigInteger b_ = b.ModInverse(a);
|
||||
BigInteger tmp = b.Multiply(b_);
|
||||
tmp = tmp.Multiply((BigInteger)congruences[i]);
|
||||
retval = retval.Add(tmp);
|
||||
}
|
||||
|
||||
return retval.Mod(all);
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user